中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (7): 91-97.doi: 10.16265/j.cnki.issn1003-3033.2024.07.0135

• 安全工程技术 • 上一篇    下一篇

基于交叉注意力的多源数据融合的气体泄漏检测

王新颖1,2(), 杨阳1, 田豪杰1, 陈俨1, 张敏3   

  1. 1 常州大学 安全科学与工程学院,江苏 常州 213164
    2 中国安全生产科学研究院 交通安全研究所,北京 100012
    3 中国石油化工股份有限公司 华东油气分公司泰州采油厂,江苏 泰州 225300
  • 收稿日期:2024-01-12 修回日期:2024-04-22 出版日期:2024-07-28
  • 作者简介:

    王新颖 (1976—),女,黑龙江海伦人,硕士,副教授,主要从事安全检测方面的研究。E-mail:

  • 基金资助:
    常州市国际科技合作项目(CZ20210026)

Gas leak detection based on cross-attention multi-source data fusion

WANG Xinying1,2(), YANG Yang1, TIAN Haojie1, CHEN Yan1, ZHANG Min3   

  1. 1 School of Safety Science and Engineering, Changzhou University, Changzhou Jiangsu 213164,China
    2 Institute of Traffic Safety,China Academy of Safety Science and Technology,Beijing 100012,China
    3 Taizhou Oil Production Plant of East China Oil and Gas Branch, China Petroleum and Chemical Corporation, Taizhou Jiangsu 225300,China
  • Received:2024-01-12 Revised:2024-04-22 Published:2024-07-28

摘要:

为解决单一传感器在管道气体泄漏检测时容易出现误报、漏报的问题,及时预警并反馈泄漏状况,提出一种基于交叉注意力的多源数据融合管道泄漏检测方法。首先,利用预训练的ShuffleNetV2模型提取热像仪数据的空间特征;然后,结合一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU),构建1DCNN-BiGRU模型,以提取气体传感器数据的时序特征;最后,运用交叉注意力捕获数据的时空关联性得到2个数据源的特征表示,通过残差方式进行特征连接后输入到分类层中,得到识别结果。结果表明:所构建的多源数据融合模型(SCGA)对气体识别准确率为99.22%,损失值在0~0.04内波动;与仅使用气体传感器数据的支持向量机(SVM)、1DCNN、BiGRU模型相比,准确率至少提升4.12%;与仅使用热图像传感器数据的MobileNetV3、ShuffleNetV2、ResNet18模型相比,准确率至少提升1.14%;与将时序特征和空间特征直接拼接的多源数据融合模型(SCG)相比,准确率提升1%。SCGA模型对气体识别具有较高精度。

关键词: 交叉注意力, 多源数据融合, 气体泄漏检测, 卷积神经网络(CNN), 双向门控循环单元(BiGRU)

Abstract:

In order to solve the problem of false alarms and missed alarms in pipeline gas leakage detection using a single sensor, timely warning and feedback of leakage status, a multi-source data fusion pipeline leakage detection method based on cross-attention was proposed. Firstly, the pre-trained ShuffleNetV2 model was used to extract spatial features from thermal imaging data. Then, a 1DCNN BiGRU model was constructed by combining a one-dimensional CNN (1DCNN) and a bidirectional gated recurrent unit (BiGRU) to extract temporal features from gas sensors. Finally, cross-attention was used to capture the spatiotemporal correlation of the data and obtain the feature representations of the two data sources. The residual method was used to connect the features and input them into the classification layer to obtain the recognition results. The results show that the constructed SCGA model has a gas recognition accuracy of 99.22%, and the loss value fluctuates between 0-0.04. Compared with support vector machines (SVM), 1DCNN, and BiGRU models that only use gas sensor data, the accuracy is improved by at least 4.12%. Compared with MobileNetV3, ShuffleNetV2, and ResNet18 models that only use thermal image sensor data, the accuracy is improved by at least 1.14%. Compared with the multi-source data fusion model SCG, which simply connects temporal and spatial features, the accuracy is improved by 1%. It was verified that the SCGA model has high accuracy.

Key words: cross-attention, multi source data fusion, gas leak detection, convolutional neural network (CNN), bidirectional gated recurrent unit (BiGRU)

中图分类号: