中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (9): 145-154.doi: 10.16265/j.cnki.issn1003-3033.2024.09.1091

• 安全工程技术 • 上一篇    下一篇

基于MISSA-CNN-BiLSTM模型的尾矿坝位移预测

刘迪1,2(), 杨辉1,2, 卢才武1,2, 阮顺领1,2, 江松1,2   

  1. 1 西安建筑科技大学 资源工程学院,陕西 西安 710005
    2 西安建筑科技大学 西安市智慧工业感知计算与决策重点实验室,陕西 西安 710005
  • 收稿日期:2024-03-18 修回日期:2024-06-19 出版日期:2024-09-28
  • 作者简介:

    刘 迪 (1987—),女,陕西咸阳人,博士,主要从事智慧矿山、尾矿坝安全及毛细水作用等方面的研究。E-mail: safety

    卢才武, 教授;

    阮顺领, 教授;

    江松, 教授

  • 基金资助:
    国家自然科学基金资助(51208282); 陕西省社会科学基金资助(2023R035)

Prediction of displacement of tailings dams based on MISSA-CNN-BiLSTM model

LIU Di1,2(), YANG Hui1,2, LU Caiwu1,2, RUAN Shunling1,2, JIANG Song1,2   

  1. 1 School of Resource Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China
    2 Xi'an Key Laboratory of Perceptive Computing and Decision for Intelligent Industry, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055,China
  • Received:2024-03-18 Revised:2024-06-19 Published:2024-09-28

摘要:

为应对尾矿坝位移预测所面临的复杂情况和精度要求,提出一种基于多算法耦合的尾矿坝位移动态预测模型。首先,基于时间序列分解模型将累计位移分为趋势项和周期项,利用高斯回归时间序列预测模型预测趋势项位移;然后,运用不同Copula函数研究诱发因素与周期项位移的整体相关性,鉴于周期项位移影响因素多样性与强非线性的特点,采用多策略融合的改进麻雀搜索算法改进麻雀搜索算法(MISSA)-卷积神经网络(CNN)-双向长短期记忆(BiLSTM)模型预测周期项位移;最后,将高斯回归趋势项位移预测值和MISSA-CNN-BiLSTM周期项位移预测值叠加。结果表明:尾矿坝累积位移预测值与实测值基本一致,预测结果相关性系数R为0.996,均方根误差(RMSE)为0.13 mm,建立的 MISSA-CNN-BiLSTM多算法耦合模型预测精度较高,且能较好地预测尾矿坝位移的阶跃型变化。

关键词: 改进麻雀搜索算法(MISSA), 卷积神经网络(CNN), 双向长短期记忆(BiLSTM), 尾矿坝, 位移预测, 深度学习模型

Abstract:

A comprehensive and sophisticated multi-algorithm coupled dynamic prediction model is proposed to address the intricate reality and stringent accuracy requirements of predicting tailings dam displacement. Firstly, by employing a time series decomposition model, the cumulative displacement is disaggregated into its trend and cyclical components. The trend term displacement is then forecasted using a Gaussian regression time series prediction model. Secondly, various Copula functions are employed to investigate the overall correlation between the inducing factors and the cyclical term displacement. Owing to the diverse influencing factors and strong nonlinearities associated with the cyclical term displacement, the MISSA-CNN-BiLSTM model is utilized for prediction. Lastly, the predicted trend term displacement from the Gaussian regression model and the predicted cyclical term displacement from the MISSA-CNN-BiLSTM model are merged. The results demonstrate a high degree of consistency between the predicted cumulative landslide displacements and the measured values, with a correlation coefficient of 0.996 and a root mean square error (RMSE) of 0.13 mm. The multi-algorithm coupled model, based on MISSA-CNN-BiLSTM, exhibits remarkable prediction accuracy and effectively captures step changes in tailings dam displacements.

Key words: multi strategy improved sparrow search algorithm(MISSA), convolutional neural networks(CNN), Bi-directional long short-term memory(BiLSTM), tailing dam, displacement prediction, deep learning model

中图分类号: