中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 33-39.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0006

• 安全社会科学与安全管理 • 上一篇    下一篇

基于自然语言处理的航行通告风险识别方法

瞿也丰(), 辜汝桐, 黄文强**(), 陈东玲, 邓李明   

  1. 中国南方航空股份有限公司, 广东 广州 510403
  • 收稿日期:2025-02-10 修回日期:2025-04-02 出版日期:2025-09-02
  • 通信作者:
    ** 黄文强(1970—),男,广东肇庆人,博士,高级工程师,主要从事情报分析、AI应用方面的工作。E-mail:
  • 作者简介:

    瞿也丰 (1991—),男,江苏连云港人,硕士,工程师,主要从事情报科学、安全管理等方面的工作。E-mail:

    黄文强, 高级工程师

  • 基金资助:
    国家重点研发计划项目(2020YFA072500)

Risk identification method for notice to airmen based on natural language processing

QU Yefeng(), GU Rutong, HUANG Wenqiang**(), CHEN Dongling, DENG Liming   

  1. China Southern Airlines Co., Ltd., Guangzhou Guangdong 510403, China
  • Received:2025-02-10 Revised:2025-04-02 Published:2025-09-02

摘要: 为实现海量航行通告文本数据的高效精准风险识别,满足现代航班运行对航行通告风险解析的需求,提升民航领域风险识别能力,提出一种融合知识增强的语义表示(ERNIE)模型、卷积神经网络(CNN)以及双向长短期记忆神经网络(BiLSTM)的航行通告风险识别模型;借助ERNIE模型进行词向量的训练,利用CNN捕捉文本局部结构的特性,并结合BiLSTM理解文本的深层次上下文关联;并开展对比试验进行验证。结果表明:相较于其他同类模型,该方法对国内中文和国际英文航行通告的识别精度分别高达92.01%和93.85%。该成果可以为航空公司在航行情报的风险解析和安全管理提供一定的数据支撑。

关键词: 自然语言处理(NLP), 航行通告, 风险识别, 知识增强的语义表示(ERNIE), 卷积神经网络(CNN), 双向长短期记忆网络(BiLSTM)

Abstract:

To achieve efficient and accurate risk identification of massive notice to airmen text data, meet the needs of modern flight operations for notice to airmen risk analysis, and enhance risk identification capabilities in the civil aviation field, a notice to airmen risk identification model integrating the pre-trained ERNIE, CNN, and BiLSTM model is proposed. The ERNIE model is used for word vector training, CNN is utilized to capture the characteristics of the local structure of the text, and the BiLSTM is combined to understand the in-depth contextual associations of the text; comparative experiments are conducted for verification. The results show that compared with other similar models, the recognition accuracy of this method for domestic Chinese and international English notice to airmens is as high as 92.01% and 93.85% respectively. This achievement can provide certain data support for airlines in risk analysis of flight intelligence and safety management.

Key words: natural language processing (NLP), notice to airmen, risk identification, enhanced representation through knowledge integration (ERNIE), convolutional neural networks (CNN), bidirectional long short-term memory (BiLSTM)

中图分类号: