中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (7): 167-175.doi: 10.16265/j.cnki.issn1003-3033.2025.07.0604

• 安全工程技术 • 上一篇    下一篇

基于VCW-Informer的天然气压缩机组监测数据预警方法

姚俊名1,2(), 梁伟1,2,**(), 郑志明3, 黄天长1,2, 付千郡1,2, 廖春燕1,2   

  1. 1 中国石油大学(北京) 安全与海洋工程学院, 北京 102249
    2 应急管理部 油气生产安全与应急技术重点实验室, 北京 102249
    3 中油国际管道有限公司, 北京 102249
  • 收稿日期:2025-03-14 修回日期:2025-05-18 出版日期:2025-07-28
  • 通信作者:
    ** 梁伟(1978—),男,陕西绥德人,博士,教授,博士生导师,主要从事油气生产安全监测与设备智能诊断、运维等方面的研究。E-mail:
  • 作者简介:

    姚俊名 (2000—),男,重庆人,博士研究生,主要研究方向为油气设备安全检测与智能诊断、人工智能算法。E-mail:

  • 基金资助:
    中国石油天然气集团有限公司合作项目(ZYQ-2023-HT-JS-17)

Monitoring data early warning method of natural gas compressor unit based on VCW-Informer

YAO Junming1,2(), LIANG Wei1,2,**(), ZHENG Zhiming3, HUANG Tianchang1,2, FU Qianjun1,2, LIAO Chunyan1,2   

  1. 1 College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China
    2 Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, Beijing 102249, China
    3 Sino-Pipeline International Company Limited (SPI), Beijing 102249, China
  • Received:2025-03-14 Revised:2025-05-18 Published:2025-07-28

摘要:

为进一步提升天然气压缩机组的早期异常预警能力,基于变分模态分解(VMD)算法、Informer算法、3σ准则判据与Correlation-Weight优化提出一个新的预警方法。基于Informer架构搭建预测模型,利用VMD算法将监测数据分解为不同频率的多维尺度特征作为模型输入。在训练过程中,计算各分量特征与原始信号的权重系数来优化调整模型内部参数。并利用预测重构结果与统计分析的3σ判据进一步提升预警性能。采集现场压缩机组2段正常与异常的压差监测数据进行实例验证,试验结果表明:相比于其他预测方法,所提出的预警方法具有最小的预测误差,正常箱体压差的预测结果同比降低66.67%~71.43% (均方误差(MSE)),36.67%~45.45% (平均绝对误差(MAE)),40.17%~45.42% (均方根误差(RMSE)),36.57%~45.72% (平均绝对百分比误差(MAPE));异常进气压差的预测结果同比降低64.43%~71.12% (MSE),44.02%~52.27% (MAE),40.36%~45.53% (RMSE),37.24%~47.79% (MAPE)。该方法在细节特征与趋势特征上具有更好的预测精度,在测试集中能提前60 min时间为异常监测信号提供预警,从而提升机组安全稳定运行的可靠性。

关键词: 变分相关性权重优化Informer (VCW-Informer), 天然气压缩机, 监测数据, 异常预警, 深度学习, 信号分解

Abstract:

In order to further enhance the early abnormal warning capability of natural gas compressor units, a novel method was proposed based on the VMD (Variational Mode Decomposition) algorithm, Informer algorithm, 3σ criterion, and Correlation-Weight optimization. A predictive model was constructed using the Informer architecture, in which the monitoring data were decomposed by VMD algorithm into multi-scale features of different frequencies to serve as model inputs. During the training process, the weight coefficients between each decomposed component and the original signal were calculated to optimize and adjust the internal model parameters. Furthermore, the prediction reconstruction results were combined with the 3σ statistical criterion to further improve the warning performance. Two segments of normal and abnormal pressure differential monitoring data from field compressor units were collected for experimental validation. The results show that, compared with other prediction methods, the proposed warning method achieves the lowest prediction errors. For the prediction of normal box pressure differentials, the errors are reduced by 66.67%-71.43% (Mean Squared Error, MSE), 36.67%-45.45% (Mean Absolute Error, MAE), 40.17%-45.42% (Root Mean Squared Error, RMSE), and 36.57%-45.72% (Mean Absolute Percentage Error, MAPE). For the abnormal inlet pressure differentials, the errors are reduced by 64.43%-71.12% (MSE), 44.02%-52.27% (MAE), 40.36%-45.53% (RMSE), and 37.24%-47.79% (MAPE). The proposed method exhibits superior prediction accuracy in both detailed and trend features. In the test set, it provides anomaly warning 60 minutes in advance, thereby improving the reliability of safe and stable operation of the compressor units.

Key words: variational correlation-weight Informer(VCW-Informer), natural gas compressor, monitoring data, abnormal early warning, deep learning, signal decomposition

中图分类号: