[1] |
曹永胜, 解治宇, 于庆磊, 等. 大孤山露天矿西北帮边坡稳定性分析及治理措施研究[J]. 金属矿山, 2020(1): 141-150.
|
|
CAO Yongsheng, XIE Zhiyu, YU Qinglei, et al. Study on the governance measures and slope stability on the northwest slope of Dagushan open-pit mine[J]. Metal Mine, 2020(1): 141-150.
|
[2] |
国家矿山安全监察局. 甘肃白银泓胜煤业有限责任公司(露天煤矿)“7·23”重大边坡坍塌事故案例[EB/OL]. (2023-09-28). https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/sgcc/sgalks/.
|
[3] |
国家矿山安全监察局. 内蒙古阿拉善新井煤业有限公司露天煤矿“2·22”特别重大坍塌事故案例[EB/OL]. (2023-09-28). https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/sgcc/sgalks/.
|
[4] |
BARLOW J, MARTIN Y, FRANKLIN S E. Detecting translational landslide scars using segmentation of landsat ETM+ and DEM data in the northern cascade mountains, British Columbia[J]. Canadian Journal of Remote Sensing, 2003, 29(4): 510-517.
|
[5] |
JU Yuanzhen, XU Qiang, JIN Shichao, et al. Loess landslide detection using object detection algorithms in northwest China[J]. Remote Sensing, 2022, 14(5): DOI: 10.3390/RS14051182.
|
[6] |
JI Shunping, YU Dawen, SHEN Chaoyong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352.
|
[7] |
张蕴灵, 傅宇浩, 孙雨, 等. 结合深度神经网络的高分辨遥感影像滑坡检测[J]. 公路, 2021, 66(5): 188-194.
|
|
ZHANG Yunling, FU Yuhao, SUN Yu, et al. Landslide detection from high-resolution remote sensing image using deep neural network[J]. Highway, 2021, 66(5): 188-194.
|
[8] |
吴琪, 周创兵, 黄发明, 等. 基于双重注意力机制的滑坡识别方法优化[J]. 地质科技通报, 2022, 41(2): 246-253.
|
|
WU Qi, ZHOU Chuangbing, HUANG Faming, et al. Optimiation of the landslide identification method based on a dual attention mechanism[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 246-253.
|
[9] |
巨袁臻, 许强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报:信息科学版, 2020, 45(11): 1747-1755.
|
|
JU Yuanzhen, XU Qiang, JIN Shichao, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755.
|
[10] |
席思远, 张西童, 王宁, 等. 倾斜摄影设备选型及像控点布设对高精度实景三维模型重建的影响[J]. 测绘通报, 2022(10): 86-92.
doi: 10.13474/j.cnki.11-2246.2022.0299
|
|
XI Siyuan, ZHANG Xitong, WANG Ning, et al. Influence of oblique photography equipment selection and image control point layout on high-precision 3D real scene model reconstruction[J]. Bulletin of Surveying and Mapping, 2022(10): 86-92.
doi: 10.13474/j.cnki.11-2246.2022.0299
|
[11] |
王朝辉, 吴昊, 孟将. 无人机倾斜摄影像控布点方案研究及精度分析[J]. 测绘通报, 2021(5):102-105,110.
doi: 10.13474/j.cnki.11-2246.2021.0151
|
|
WANG Zhaohui, WU Hao, MENG Jiang. Research and accuracy analysis of image control point arrangement schemes for UAV oblique photography[J]. Bulletin of Surveying and Mapping, 2021(5): 102-105,110.
doi: 10.13474/j.cnki.11-2246.2021.0151
|
[12] |
汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014, 69(9): 1305-1325.
doi: 10.11821/dlxb201409006
|
|
TANG Guoan. Progress of DEM and digital terrain analysis in China[J]. Acta Geographica Sinica, 2014, 69(9): 1305-1325.
doi: 10.11821/dlxb201409006
|
[13] |
豆红强, 黄思懿, 简文彬, 等. 基于遥感数据的闽东南山区公路滑坡快速识别技术研究[J]. 自然灾害学报, 2023, 32(1): 217-227.
|
|
DOU Hongqiang, HUANG Siyi, JIAN Wenbin, et al. Research on rapid identification technology of highway landslide in mountainous areas of southeast Fujian based on remote sensing data[J]. Journal of Natural Disasters, 2023, 32(1): 217-227.
|
[14] |
卢冰, 李灿林, 冯薛龙, 等. 基于改进SRResNet深度学习网络的低照度图像超分辨率重建方法[J]. 科学技术与工程, 2022, 22(27): 12 045-12 052.
|
|
LU Bing, LI Canlin, FENG Xuelong, et al. Super-resolution reconstruction method for low illumination images based on improved SRResNet deep learning network[J]. Science Technology and Engineering, 2022, 22(27): 12 045-12 052.
|
[15] |
刘佳, 伍宇明, 高星, 等. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7): 1275-1285.
doi: 10.12082/dqxxkx.2022.210704
|
|
LIU Jia, WU Yuming, GAO Xing, et al. Image recognition of co-seismic landslide based on GEE and U-net neural network[J]. Journal of Geo-information Science, 2022, 24(7): 1275-1285.
|
[16] |
SHAO Zhengfeng, ZHOU Zifan, HUANG Xiao, et al. MRENet: Simultaneous extraction of road surface and road centerline in complex urban from very high-resolution images[J]. Remote Sensing, 2021, 13(2): DOI: 10.3390/RS13020239.
|