中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 40-46.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0007

• 安全工程技术 • 上一篇    下一篇

基于多特征融合的火源视觉识别方法研究

孟广雄()   

  1. 国能准能集团有限责任公司, 内蒙古 鄂尔多斯 010300
  • 收稿日期:2025-02-14 修回日期:2025-04-21 出版日期:2025-09-02
  • 作者简介:

    孟广雄 (1974—),男,内蒙古鄂尔多斯人,硕士,正高级工程师,主要从事设备管理、智能化及煤化工等相关工作。E-mail:

Research on fire source visual recognition method based on multi-feature fusion

MENG Guangxiong()   

  1. CHN Energy Zhunneng Group Co., Ltd., Ordos Inner Mongolia 010300, China
  • Received:2025-02-14 Revised:2025-04-21 Published:2025-09-02

摘要: 为解决煤炭开采过程中因火源视觉识别精度低而导致的安全隐患问题,提出一种基于多特征融合的火源视觉识别方法。首先,构建复杂的监控系统网络拓扑结构采集火源图像,采用高斯滤波和改进的帧差法预处理图像,以去除噪声并捕捉火焰亮度的动态变化特征,获取高质量的图像;其次,在预处理后的图像中,提取火源的关键特征,包括颜色特性、运动轨迹和形状轮廓等,采取多图像特征融合策略,利用高斯核函数和加权求和机制,将不同特征融合为更具表达力和判别力的特征表示;最后,结合支持向量机分类和基于区域的卷积神经网络目标检测算法,实现对火源的准确识别。结果表明:提出的方法的火源识别精度在87%以上,识别精度比较高;能够在多种复杂场景中准确捕捉火源特征,且在煤炭火灾的识别中精度高。

关键词: 多特征融合, 视觉识别, 火源识别, 火源图像, 特征提取, 卷积神经网络

Abstract:

In order to address the safety hazards caused by low visual recognition accuracy of fire sources during coal mining, a fire source visual recognition method based on multi-feature fusion was proposed. Firstly, a complex monitoring system network topology was constructed to collect fire source images. Gaussian filtering and an improved frame difference method were used for image preprocessing to remove noise and capture dynamic changes in flame brightness, resulting in high-quality images. Secondly, in the preprocessed image, key features of the fire source were extracted, including color characteristics, motion trajectories, and shape contours. A multi-image feature fusion strategy was adopted, and Gaussian kernel functions and weighted summation mechanisms were used to fuse different features into more expressive and discriminative feature representations. Finally, by combining support vector machine classification with a region-based convolutional neural network object detection algorithm, accurate identification of fire sources could be achieved. The results show that the proposed method has a fire source recognition accuracy of over 87%, indicating a relatively high recognition accuracy. It can accurately capture fire source features in various complex scenarios and has high accuracy in identifying coal fires.

Key words: multi-feature fusion, visual recognition, fire source identification, fire source image, feature extraction, convolutional neural network

中图分类号: