中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (9): 137-144.doi: 10.16265/j.cnki.issn1003-3033.2025.09.0030

• 安全工程技术 • 上一篇    下一篇

基于HEOA-XGBoost组合模型的边坡稳定性预测

祁云1,2,3(), 白晨浩2,**(), 秦凯4, 段宏飞5, 李绪萍1, 汪伟1,2   

  1. 1 内蒙古科技大学 矿业与煤炭学院,内蒙古 包头 014010
    2 山西大同大学 煤炭工程学院,山西 大同 037000
    3 中国职业安全健康协会 《中国安全科学学报》编辑部, 北京 100029
    4 煤炭科学技术研究院有限公司,北京 100013
    5 中山大学 土木工程学院,广东 广州 510275
  • 收稿日期:2025-03-20 修回日期:2025-06-12 出版日期:2025-09-28
  • 通信作者:
    **白晨浩(2001—),男,内蒙古准格尔旗人,硕士研究生,主要研究方向为深部矿山动力灾害防治及应急技术。E-mail:
  • 作者简介:

    祁 云 (1988—),男,安徽淮北人,博士,副教授,主要从事矿山动力灾害防治及应急管理技术研究。E-mail:

    秦 凯 助理研究员

    段宏飞 教授

    李绪萍 教授

    汪 伟 副教授

  • 基金资助:
    国家自然科学基金面上项目资助(52174188); 国家自然科学基金地区基金资助(52464020); 山西省研究生实践创新项目(2024SJ378); 山西大同大学研究生实践创新项目(2024SJCX05)

Slope stability prediction based on HEOA-XGBoost combined model

QI Yun1,2,3(), BAI Chenhao2,**(), QIN Kai4, DUAN Hongfei5, LI Xuping1, WANG Wei1,2   

  1. 1 School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
    2 College of Coal Engineering, Shanxi Datong University, Datong Shanxi 037000, China
    3 Editorial Office of China Safety Science Journal, China Occupational Safety and Health Association, Beijing 100029, China
    4 China Coal Research Institute, Beijing 100013, China
    5 School of Civil Engineering, Sun Yat-sen University, Guangzhou Guangdong 510275, China
  • Received:2025-03-20 Revised:2025-06-12 Published:2025-09-28

摘要:

为预防边坡失稳安全事故发生,针对边坡失稳的不确定性及影响因素的复杂性等问题,提出一种基于人类进化优化算法(HEOA)优化极端梯度提升(XGBoost)的组合模型,以预测边坡稳定性。首先分析影响边坡失稳的主控因素,选取边坡岩体的6项影响因素建立边坡稳定性预测指标体系;其次利用极差标准化统一样本量纲,并采用合成少数类过采样技术(SMOTE)平衡样本等级分布;然后通过HEOA优化XGBoost模型的最大深度、学习率、子样本比例、列样本比例和最小损失;最后利用准确率、精确率、召回率、F1分数和科恩卡帕系数综合评价所建模型的预测结果,并将该模型应用于具体工程实例。结果表明:经HEOA优化后XGBoost模型的最大深度、学习率、子样本比例、列样本比例和最小损失分别为6、0.583 8、0.461 5、0.584 6和0.024 4时效果凸显;HEOA-XGBoost组合模型预测边坡稳定性状态相比于其他智能算法优化的XGBoost模型和单一XGBoost模型,其各评价指标均有所提升,表明该模型预测边坡稳定性状态具有较高的精准度和泛化性。

关键词: 边坡稳定性, 人类进化优化算法(HEOA), 极端梯度提升(XGBoost), 极差标准化, 合成少数类过采样技术(SMOTE)

Abstract:

To prevent slope instability accidents, a combined model based on HEOA optimized XGBoost was proposed to predict slope stability in response to the uncertainty of slope instability and the complexity of influencing factors. First, the main controlling factors affecting slope instability were analyzed. Six key influencing factors related to slope rock mass were selected to establish a slope stability prediction index system. Second, range normalization was applied to unify the feature scales, and SMOTE was employed to balance the distribution of stability classes within the dataset. Third, the HEOA was used to optimize the maximum depth, learning rate, subsample ratio, column sample ratio, and minimum loss of the XGBoost model. Finally, the prediction results of the constructed model were comprehensively evaluated using the following metrics: accuracy, precision, recall, F1 score, and Cohen's Kappa coefficient, and the model was applied to specific engineering cases. The results show that the XGBoost model optimized by HEOA achieves the best performance when the maximum depth, learning rate, subsample ratio, column sample ratio, and minimum loss were 6, 0.583 8, 0.461 5, 0.584 6 and 0.024 4, respectively. Compared with other intelligent algorithms-optimized XGBoost models and single XGBoost model, the HEOA-XGBoost hybrid model shows improvements in all evaluation indicators in predicting slope stability, indicating that the model has high accuracy and generalization ability in predicting slope stability.

Key words: slope stability, human evolutionary optimization algorithm (HEOA), eXtreme gradient boosting (XGBoost), range normalization, synthetic minority oversampling technique (SMOTE)

中图分类号: