中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 99-106.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0016

• 安全工程技术 • 上一篇    下一篇

基于深度神经网络的概率积分法沉陷预计模型参数反演

胡秋萍1,2(), 马智1,2,**(), 王建敏2, 蒋建民3   

  1. 1 国家能源集团 宁夏煤业责任有限公司, 宁夏 灵武 750408
    2 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
    3 北京睿知行科技有限公司, 北京 100102
  • 收稿日期:2025-02-04 修回日期:2025-04-06 出版日期:2025-09-02
  • 通信作者:
    ** 马智(1985—),男,宁夏海原人,本科,高级工程师,主要从事煤矿地测防治水管理、矿井智能开采、地质环境等工作。E-mail:
  • 作者简介:

    胡秋萍 (1985—),女,宁夏灵武人,本科,高级工程师,主要从事基于人工智能的智慧矿山建设与地测防治水技术管理等方面的工作。E-mail:

    马智, 高级工程师

    王建敏, 教授

Parameter inversion of subsidence prediction model using probability integration method based on deep neural network

HU Qiuping1,2(), MA Zhi1,2,**(), WANG Jianmin2, JIANG Jianmin3   

  1. 1 Ningxia Coal Industry Co., Ltd., China Energy Group, Lingwu Ningxia 750408, China
    2 School of Geomatics, Liaoning Technical University, Fuxin Liaoning 123000, China
    3 RuiMind Technologies Co., Ltd., Beijing 100102, China
  • Received:2025-02-04 Revised:2025-04-06 Published:2025-09-02

摘要: 为解决矿区地表形变监测中传统参数反演方法收敛速度慢、预测精度不足的问题,构建具有物理机制约束的深度学习框架,实现矿区工作面走向和倾向地表移动参数的精准估计。方法上,基于概率积分法沉陷预计模型的理论基础,分别构建面向工作面走向4参数反演的Trend-Net网络和倾向6参数反演的Tendency-Net网络。以地表移动预测值与实测值的均方根误差构建损失函数,进行梯度优化,动态修正沉陷预计参数。结果表明:相较于最小二乘法、粒子群优化算法及贝叶斯算法,在走向参数反演中收敛迭代次数大幅降低,倾向参数反演的均方根误差降低;该方法将深度学习网络的非线性拟合能力与概率积分法的物理约束相结合,既保障反演过程的理论合理性,又提升参数寻优的全局性。

关键词: 概率积分法, 沉陷预计, 深度神经网络, 参数反演, 矿区工作面

Abstract:

To improve convergence speed and prediction accuracy of traditional parameter inversion methods in surface deformation monitoring of mining areas, a deep learning framework with physical mechanism constraints was constructed to achieve accurate estimation of surface movement parameters of the working face’s strike and dip in mining areas. Methodologically, based on the theoretical basis of the subsidence prediction model using the probability integration method, the Trend-Net network for the inversion of the 4-parameter strike and the Tendency-Net network for the inversion of the 6-parameter dip of the working face were respectively constructed. The loss function was constructed based on the root mean square error between the predicted value and the measured value of the surface movement, and gradient optimization was carried out to dynamically correct the predicted parameters of subsidence. The experimental results show that compared with the least square method, the particle swarm optimization algorithm, and the Bayesian algorithm, the number of convergence iterations in the inversion of the strike parameter is significantly reduced, and the root mean square error in the inversion of the dip parameter is reduced. This method combines the nonlinear fitting ability of the deep learning network with the physical constraints of the probabilistic integration method. It not only ensures the theoretical rationality of the inversion process but also enhances the global nature of parameter optimization.

Key words: probability integration method, subsidence prediction, deep neural network, parameter inversion, working face of mining area

中图分类号: