中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S2): 231-238.doi: 10.16265/j.cnki.issn1003-3033.2025.S2.0030

• 防灾减灾技术与工程 • 上一篇    下一篇

基于CNN-LSTM模型的露天矿边坡表面变形预测

蔡博渊1,2(), 于正兴1,2, 任义1,2,**(), 张亦海1,2, 马海涛1, 王一丹1,2   

  1. 1 中国安全生产科学研究院, 北京 100012
    2 中安国泰(北京)科技发展有限公司, 北京 102209
  • 收稿日期:2025-08-28 出版日期:2026-02-04
  • 通信作者:
    **任 义(1992—),男,安徽淮北人,博士,助理研究员,主要从事边坡监测预警、岩石力学、地球物理等方面的工作。E-mail:
  • 作者简介:

    蔡博渊 (2000—),男,广东惠州人,硕士,助理工程师,主要从事边坡监测预警、岩土结构抗震等方面的工作。E-mail:

    于正兴 正高级工程师

    任义 助理研究员

    张亦海 高级工程师

    马海涛 正高级工程师

  • 基金资助:
    应急管理部重点科技计划项目(2024EMST080802); 中国安全生产科学研究院基本科研业务费专项资金资助(2024JBKY20)

Surface deformation prediction of open-pit mine slopes based on CNN-LSTM model

CAI Boyuan1,2(), YU Zhengxing1,2, REN Yi1,2,**(), ZHANG Yihai1,2, MA Haitao1, WANG Yidan1,2   

  1. 1 China Academy of Safety Science and Technology, Beijing 100012, China
    2 Cathay Safety Technology Co., Ltd., Beijing 102209, China
  • Received:2025-08-28 Published:2026-02-04

摘要:

为满足露天矿边坡表面变形高精度预测的工程需求,首先,构建卷积长短时记忆网络(CNN-LSTM)混合预测模型,并以某露天矿为案例,基于边坡合成孔径雷达(S-SAR)获取时序变形数据,采用小波降噪对原始数据进行去噪预处理,提升数据质量;其次,引入自回归积分移动平均模型(ARIMA)作为传统统计方法基准模型,分析基于深度学习模型进行预测的必要性;最后,将CNN-LSTM混合预测模型与单一结构的长短期记忆网络(LSTM)和卷积神经网络(CNN)模型进行对比,验证所构建模型的科学性和有效性。结果表明:LSTM、CNN与CNN-LSTM模型在均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)和平均绝对百分比误差(MAPE)等指标上均优于ARIMA模型,证明边坡变形序列具有显著的非线性特征。在深度学习模型对比中,CNN-LSTM模型表现最为优越。相较于LSTM模型,其RMSE和MAE分别降低55.54%和59.24%;相较于CNN模型,分别降低48.63%和52.15%。此外,该混合模型的R2与MAPE较LSTM模型分别提升5.29%和59.80%,较CNN模型分别提升3.27%和52.51%。

关键词: 露天矿边坡, 变形预测, 卷积长短时记忆网络(CNN-LSTM), 边坡合成孔径雷达(S-SAR), 小波降噪

Abstract:

This study aims to meet the engineering demand for high-precision prediction of surface deformation in open-pit mine slopes. Firstly, a hybrid prediction model of CNN-LSTM was constructed. With a certain open-pit mine taken as a case, time-series deformation data were acquired using S-SAR. Wavelet denoising was applied to preprocess the raw data and enhance data quality. An autoregressive integrated moving average (ARIMA) model was then introduced as the baseline for traditional statistical methods to evaluate the necessity of employing deep learning-based prediction approaches. Finally, the hybrid prediction model of CNN-LSTM was compared with single-structure LSTM and CNN models to verify the scientific soundness and effectiveness of the proposed models. The results show that the LSTM, CNN, and CNN-LSTM models all outperform the ARIMA model in terms of root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and mean absolute percentage error (MAPE), demonstrating the pronounced nonlinear characteristics of slope-deformation sequences. Among the deep learning architectures, the CNN-LSTM model exhibits the best overall performance. Relative to those of the LSTM model, its RMSE and MAE are reduced by 55.54% and 59.24%, respectively. Relative to those of the CNN model, they are reduced by 48.63% and 52.15%, respectively. In addition, the hybrid model's R2 and MAPE are improved by 5.29% and 59.80% compared with those of the LSTM model, and by 3.27% and 52.51% compared with those of the CNN model.

Key words: open-pit mine slope, deformation prediction, convolutional neural network-long short-term memory network (CNN-LSTM), slope-synthetic aperture radar (S-SAR), wavelet denoising

中图分类号: