中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (4): 93-100.doi: 10.16265/j.cnki.issn1003-3033.2024.04.1390

• 安全工程技术 • 上一篇    下一篇

基于数据模型协作的海上钻井溢流早期预测预警

杨向前1(), 张苹茹2, 武胜男2,**(), 张来斌2, 李中1, 冯桓榰1   

  1. 1 中海石油(中国)有限公司 北京研究中心,北京 100028
    2 中国石油大学(北京) 安全与海洋工程学院,北京 102249
    3 油气生产安全与应急技术应急管理部重点实验室,北京 102249
  • 收稿日期:2023-10-13 修回日期:2024-01-29 出版日期:2024-04-28
  • 通讯作者:
    **武胜男(1986—),女,山西大同人,博士,副教授,主要从事复杂油气开采及关键安全装备风险评估、预警、可靠性与测试维护等方面的研究。E-mail:
  • 作者简介:

    杨向前 (1970—),男,陕西西安人,本科,高级工程师,从事海洋石油钻机和修井机的技术发展规划、方案论证和新技术开发等工作。E-mail:

    张来斌 教授

  • 基金资助:
    国家重点研发计划资助项目(2022YFC2806504); 中海石油(中国)有限公司北京研究中心科研资助项目(CCL2022RCPS2008XNN)

Early prediction and warning of offshore drilling overflow based on data model collaboration

YANG Xiangqian1(), ZHANG Pingru2, WU Shengnan2,**(), ZHANG Laibin2, LI Zhong1, FENG Huanzhi1   

  1. 1 Beijing Research Center of CNOOC, Beijing 100028, China
    2 School of Safety and Ocean Engineering, China University of Petroleum (Beijing),Beijing 102249, China
    3 Key Laboratory of Oil and Gas Production Safety and Emergency Technology Emergency Management,Beijing 102249, China
  • Received:2023-10-13 Revised:2024-01-29 Published:2024-04-28

摘要:

为防止海上钻井过程中井喷事故的发生,提出基于数据模型协作的海上钻井溢流早期预测预警方法。首先,建立基于粒子群优化(PSO)-最小二乘支持向量机(LSSVM)(PSO-LSSVM)的溢流风险预测模型,预测钻井监测参数未来时长内的趋势,并分析溢流事件与表征参数之间的关联关系;然后,建立基于朴素贝叶斯方法的钻井单参数溢流概率估算模型,并通过优化的D-S方法融合多个钻井参数的概率,分级预警溢流事件。结果表明:基于PSO-LSSVM的预测模型所得的溢流表征参数,预测误差较低;因对溢流事件的敏感度不同,单钻井参数所表征的溢流事件概率存在一定偏差;融合后的预警模型能够解决单参数的预警时间不一致的问题,排除误报警的可能。

关键词: 数据模型协作, 钻井溢流, 早期预测, 粒子群优化(PSO)-最小二乘支持向量机(LSSVM)(PSO-LSSVM), 预警模型

Abstract:

An early prediction and warning method of offshore drilling overflow based on data model collaboration was proposed to prevent blowout accidents during offshore drilling. Firstly, an overflow risk prediction model based on PSO-LSSVM was established to predict the trend of drilling monitoring parameters in the future, and analyze the correlation between overflow events and characterization parameters. Then, a single-parameter overflow probability estimation prediction model was proposed based on the Naive Bayesian method, and the probabilities of multiple drilling parameters were integrated through the optimized D-S method to realize a hierarchical early warning of overflow events. The results indicated that the overflow characterization parameters simulated by the PSO-LSSVM model had low prediction errors. The overflow event probability represented by a single drilling parameter showed discrepancies due to different sensitivities. The fused early warning model can address the issues of inconsistent early warning times of single parameters and eliminate the possibility of false alarms.

Key words: data model collaboration, drilling overflow, early prediction, particle swarm optimization(PSO)-least squares support vector machines(LSSVM)(PSO-LSSVM), early warning models

中图分类号: