[1] |
朱敬宇, 陈国明, 吕寒, 等. 深水钻井井喷事故风险控制决策方法[J]. 中国安全科学学报, 2020, 30(2):113-118.
doi: 10.16265/j.cnki.issn1003-3033.2020.02.018
|
|
ZHU Jingyu, CHEN Guoming, LYU Han, et al. Research on risk control decision method for deepwater drilling blowout[J]. China Safety Science Journal, 2020, 30(2):113-118.
doi: 10.16265/j.cnki.issn1003-3033.2020.02.018
|
[2] |
LIANG Haibo, LIU Gang, GAO Jianchang, et al. Overflow remote warning using improved fuzzy c-means clustering in IoT monitoring system based on multiaccess edge computing[J]. Neural Computing and Applications, 2020, 32(19):15 399-15 410.
|
[3] |
闫铁, 许瑞, 刘维凯, 等. 中国智能化钻井技术研究发展[J]. 东北石油大学学报, 2020, 44(4):15-21.
|
|
YAN Tie, XU Rui, LIU Weikai, et al. Research and development of intelligent drilling technology in china[J]. Journal of Northeast Petroleum University, 2020, 44(4):15-21.
|
[4] |
SU Kanhua, GUAN Zhichuan, ZHOU Guangchen. Error analysis of standpipe pressure control and prediction of surface casing pressure for horizontal well killing process[J]. Journal of China University of Petroleum. Edition of Natural Science, 2008, 59(32):51-55.
|
[5] |
吴君达, 李治平, 孙妍, 等. 基于神经网络的剩余油分布预测及注采参数优化[J]. 油气地质与采收率, 2020, 27(4):85-93.
|
|
WU Junda, LI Zhiping, SUN Yan, et al. Neural network-based prediction of remaining oil distribution and optimization of injection-production parameters[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4):85-93.
|
[6] |
刘巍, 刘威, 谷建伟, 等. 利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究[J]. 油气地质与采收率, 2020, 27(2):118-124.
|
|
LIU Wei, LIU Wei, GU Jianwei, et al. Research on interwell connectivity of oil reservoirs based on Kalman filter and artificial neural network[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2):118-124.
|
[7] |
王泽龙, 刘先贵, 唐海发, 等. 基于多次数据吸收集合平滑算法的自动油藏历史拟合研究[J]. 特种油气藏, 2021, 28(3):99-105.
doi: 10.3969/j.issn.1006-6535.2021.03.015
|
|
WANG Zelong, LIU Xiangui, TANG Haifa, et al. Study on automatic reservoir history matching based on ES-MDA algorithm[J]. Special Oil and Gas Reservoirs, 2021, 28(3):99-105.
|
[8] |
葛景凯. 综合录井参数在钻井工程异常预警中的应用探讨[J]. 信息系统工程, 2020(3):97-98.
|
|
GE Jingkai. Discussion on the application of comprehensive logging parameters in abnormal early warning of drilling engineering[J]. Information System Engineering, 2020(3):97-98.
|
[9] |
LIANG Haibo, TANG Yongqiang, XIANG Li, et al. Research on drilling kick and loss monitoring method based on bayesian classification[J]. Pakistan Journal of Statistics, 2014, 30(6):1251-1266.
|
[10] |
WU Shengnan, ZHANG Laibin, ZHENG Wenpei, et al. A DBN-based risk assessment model for prediction and diagnosis of offshore drilling incidents[J]. Journal of Natural Gas Science and Engineering, 2016, 34:139-158.
|
[11] |
LIANG Haibo, WANG Zhi. Application of an intelligent early-warning method based on DBSCAN clustering for drilling overflow accident[J]. Cluster Computing-The Journal of Networks Software Tools and Applications, 2019, 22(5):12 599-12 608.
|
[12] |
徐振华. 基于云计算的控压钻井溢流监测诊断系统研究与设计[D]. 成都: 西南石油大学, 2019.
|
|
XU Zhenhua. Research and design of overflow monitoring and diagnosis system for MPD based on cloud computing[D]. Chengdu: Southwest Petroleum University, 2019.
|
[13] |
李玉飞, 张博, 孙伟峰. 基于SVM和D-S证据理论的早期溢流智能识别方法[J]. 钻采工艺, 2020, 43(5):27-30,6.
doi: 10.3969/J. ISSN.1006-768X.2020.05.08
|
|
LI Yufei, ZHANG Bo, SUN Weifeng. Intelligent identification method of early overflow based on SVM and D-S evidence theory[J]. Drilling and Production Technology, 2020, 43(5):27-30,6.
doi: 10.3969/J. ISSN.1006-768X.2020.05.08
|
[14] |
SUN Wenfeng, LI Maoran, LIU Chunyang, et al. Experimental research on lost circulation and overflow monitoring system for drilling engineering based on the requirements of safe and efficient oil and gas drilling[J]. Fresenius Environmental Bulletin, 2021, 30(2):1511-1517.
|
[15] |
李福祥, 王建敏, 梁建创, 等. 离散属性的朴素贝叶斯分类算法的优化[J]. 小型微型计算机系统, 2022, 43(5):897-901.
|
|
LI Fuxiang, WANG Jianmin, LIANG Jianchuang, et al. Optimization of naive Bayesian classification algorithm for discrete attributes[J]. Journal of Chinese Computer Systems, 2022, 43(5):897-901.
|
[16] |
罗福星, 刘卫国. 一种朴素贝叶斯分类增量学习算法[J]. 微计算机应用, 2008, 29(6):107-112.
|
|
LUO Fuxing, LIU Weiguo. An incremental learning algorithm for Naive Bayesian classification[J]. Microcomputer Applications, 2008, 29(6):107-112.
|
[17] |
宋英华, 吴昊, 刘丹, 等. 基于D-S证据理论的地震应急救援群决策[J]. 中国安全科学学报, 2020, 30(5):163-168.
doi: 10.16265/j.cnki.issn1003-3033.2020.05.025
|
|
SONG Yinghua, WU Hao, LIU Dan, et al. Group decision-making for earthquake emergency rescue plan based on D-S evidence theory[J]. China Safety Science Journal, 2020, 30(5):163-168.
doi: 10.16265/j.cnki.issn1003-3033.2020.05.025
|
[18] |
彭会萍, 曹晓军. 基于决策距离测量的D-S证据理论冲突处理方法[J]. 计算机应用与软件, 2011, 28(4):174-176,179.
|
|
PENG Huiping, CAO Xiaojun. D-S evidence theory conflict handling method based on decision distance measurement[J]. Computer Applications and Software, 2011, 28(4):174-176,179.
|