中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (4): 100-106.doi: 10.16265/j.cnki.issn1003-3033.2023.04.1221

• 安全工程技术 • 上一篇    下一篇

农村改造房屋结构安全预警模型

段在鹏1,2(), 李炯3, 李帆3, 刘碧强1,**()   

  1. 1 福州大学 经济与管理学院,福建 福州 350108
    2 福建省应急管理研究中心,福建 福州 350108
    3 福州大学 环境与安全工程学院,福建 福州 350108
  • 收稿日期:2022-11-20 修回日期:2023-02-18 出版日期:2023-04-28
  • 通讯作者:
    ** 刘碧强(1977—),男,湖南邵东人,硕士,副教授,硕士生导师,主要从事公共治理、安全管理等方面的研究。E-mail:
  • 作者简介:

    段在鹏 (1985—),男,山东潍坊人,博士,副教授,硕士生导师,主要从事安全预警系统、安全复杂系统分析等方面的教学与研究工作。E-mail:

  • 基金资助:
    国家社会科学基金资助(17CGL049); 福建省社会科学基金资助(FJ2022B052)

Structural safety early warning model of rural reconstruction houses

DUAN Zaipeng1,2(), LI Jiong3, LI Fan3, LIU Biqiang1,**()   

  1. 1 School of Economics and Management, Fuzhou University,Fuzhou Fujian 350108,China
    2 Fujian Emergency Management Research Center,Fuzhou Fujian 350108,China
    3 College of Environment and Safety Engineering, Fuzhou University,Fuzhou Fujian 350108,China
  • Received:2022-11-20 Revised:2023-02-18 Published:2023-04-28

摘要:

农村改造房屋结构安全问题突出,尤其长沙“4·29”民房坍塌事故更凸显出该问题的严峻性,为解决这一问题,首先,基于机器学习算法,构建农村改造房屋结构安全预警指标体系;其次,对初始数据作标准化等预处理,并基于过采样算法解决样本类别不平衡问题,使用经典机器学习算法构建农村改造房屋结构安全预警模型;然后,利用集成学习算法优化原有模型以提高模型精度;最后,对各预警指标的重要度排序。结果表明:经典机器学习算法预测效果较好的是支持向量机(SVM),集成算法效果较好的是堆叠法,总体预测率为85.3%;较为重要的预警指标是建筑面积过大、建筑年份久、无施工草图、非六大重点排查房屋、独立基础、用于出租特别的群组牟利的城乡结合部自建房、地上层数过大、未经正规设计、无资质设计等17个。

关键词: 农村改造房屋, 结构安全, 预警模型, 机器学习, 集成算法

Abstract:

The structural safety problem of rural reconstruction houses structure is prominent, especially the ' Changsha 4·29 civil housing collapse accident ' highlights the seriousness of the problem. In order to solve this problem, firstly, based on machine learning algorithm, the safety early warning index system of rural reconstruction housing structure was constructed. Secondly, the initial data was preprocessed by standardization, and the imbalance of sample categories was solved based on oversampling algorithm. The classical machine learning algorithm was used to construct the safety early warning model of rural housing structure. Then, the ensemble learning algorithm was used to optimize the original model to improve the accuracy of the model. Finally, the importance of each early warning index was sorted. The results show that the classical machine learning algorithm has a better prediction effect on support vector machine (SVM), and the ensemble algorithm has a better effect on stacking method, with an overall prediction rate of 85.3%. The more important early warning indicators are 17, such as too large construction area, long construction year, no construction sketch, non-six key investigation houses, independent foundation, self-built houses in the urban-rural fringe for renting special groups for profit, too large number of upper floors, irregular design, and unqualified design.

Key words: rural reconstruction houses, safety of housing structure, early warning model, machine learning, integrated algorithm