[1] |
冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 2019, 38(4):649-673.
|
|
FENG Xiating, XIAO Yaxun, FENG Guangliang, et al. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4):649-673.
|
[2] |
田睿, 孟海东, 陈世江, 等. RF-AHP-云模型下岩爆烈度分级预测模型[J]. 中国安全科学学报, 2020, 30(7):166-172.
doi: 10.16265/j.cnki.issn1003-3033.2020.07.025
|
|
TIAN Rui, MENG Haidong, CHEN Shijiang, et al. Prediction model of rockburst intensity classification based on RF-AHP-Cloud model[J]. China Safety Science Journal, 2020, 30(7):166-172.
doi: 10.16265/j.cnki.issn1003-3033.2020.07.025
|
[3] |
ZHOU Jian, LI Xibing, MITRI H S. Evaluation method of rockburst: State-of-the-art literature review[J]. Tunnelling and Underground Space Technology, 2018, 81:632-659.
doi: 10.1016/j.tust.2018.08.029
|
[4] |
PU Yuanyuan, APEL D B, LIU V, et al. Machine learning methods for rockburst prediction-state-of-the-art review[J]. International Journal of Mining Science and Technology, 2019, 29(4):565-570.
doi: 10.1016/j.ijmst.2019.06.009
|
[5] |
汤志立, 王雪, 徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报:自然科学版, 2021, 61(6):543-555.
|
|
TANG Zhili, WANG Xue, XU Qianjun. Rockburst prediction based on oversampling and objective weighting method[J]. Journal of Tsinghua University: Science and Technology, 2021, 61(6):543-555.
|
[6] |
靳春玲, 党丹丹, 贡力, 等. IPP-PNN模型在川藏铁路深埋长大隧道岩爆预测中的应用[J]. 铁道科学与工程学报, 2023, 20(3):986-995.
|
|
JIN Chunling, DANG Dandan, GONG Li. Application of IPP-PNN model in rockburst prediction occurring deep-buried long tunnel of Sichuan-Tibet Railway[J]. Journal of Railway Science and Engineering, 2023, 20(3):986-995.
|
[7] |
张凯, 张科, 李昆. 主元分析-神经网络岩爆等级预测模型[J]. 中国安全科学学报, 2021, 31(3):96-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.014
|
|
ZHANG Kai, ZHANG Ke, LI Kun. Prediction model of rockburst grade based on PCA-neural network[J]. China Safety Science Journal, 2021, 31(3):96-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.014
|
[8] |
李宁, 王李管, 贾明涛. 基于粗糙集理论和支持向量机的岩爆预测[J]. 中南大学学报:自然科学版, 2017, 48(5):1268-1275.
|
|
LI Ning, WANG Liguan, JIA Mingtao. Rockburst prediction based on rough set theory and support vector machine[J]. Journal of Central South University: Science and Technology, 2017, 48(5):1268-1275.
|
[9] |
PU Yuanyuan, APEL D B, XU Huawei. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier[J]. Tunnelling and Underground Space Technology, 2019, 90:12-18.
doi: 10.1016/j.tust.2019.04.019
|
[10] |
SEYEDALI M, ANDREW L. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
doi: 10.1016/j.advengsoft.2016.01.008
|
[11] |
周煦桐. 基于神经网络算法的岩爆预测方法研究[D]. 湘潭: 湘潭大学, 2020.
|
|
ZHOU Xutong. Prediction of rockbursts based on BP neural network[D]. Xiangtan: Xiangtan University, 2020.
|
[12] |
冯磊磊. 基于组合赋权和蝴蝶突变模型的岩爆等级评判[D]. 邯郸: 河北工程大学, 2021.
|
|
FENG Leilei. Evaluation of rock burst grade based on combinatorial weighting and butterfly mutation model[D]. Handan: Hebei University of Engineering, 2021.
|
[13] |
VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5):988-999.
doi: 10.1109/72.788640
pmid: 18252602
|
[14] |
丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):2-10.
|
|
DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1):2-10.
|
[15] |
张龙, 彭小明, 熊国良, 等. 基于MSE与PSO-SVM的机车轮对轴承智能诊断方法[J]. 铁道科学与工程学报, 2021, 18(9):2408-2417.
|
|
ZHANG Long, PENG Xiaoming, XIONG Guoliang, et al. Intelligent diagnosis of locomotive wheelset bearings using MSE and PSO-SVM[J]. Journal of Railway Science and Engineering, 2021, 18(9):2408-2417.
|
[16] |
LI Yufang, CHEN Mingnuo, LU Xiaoding, et al. Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system[J]. Science China Technological Sciences, 2018, 61(5):782-790.
doi: 10.1007/s11431-017-9213-0
|