[1] |
李艳, 赵均海, 曹雪叶, 等. 内压作用下弯管爆破压力的三剪统一解[J]. 应用力学学报, 2015, 32(4): 530-536,700.
|
|
LI Yan, ZHAO Junhai, CAO Xueye, et al. Triple-shear unified solution for burst pressure of elbows under internal pressure[J]. Chinese Journal of Applied Mechanics, 2015, 32(4): 530-536,700.
|
[2] |
陈钢, 张传勇, 刘应华. 内压和面内弯矩作用下含局部减薄弯头塑性极限载荷的有限元分析[J]. 工程力学, 2005, 22(2): 43-49.
|
|
CHEN Gang, ZHANG Chuanyong, LIU Yinghua. Finite element analysis of plastic limit loads of locally thinned elbows under internal pressure and in-plane bending moment[J]. Engineering Mechanics, 2005, 22(02): 43-49.
|
[3] |
李建, 周昌玉, 薛吉林. 含内局部减薄缺陷高温弯管蠕变极限载荷及其安全评定[J]. 机械强度, 2015, 37(2): 348-354.
|
|
LI Jian, ZHOU Changyu, XUE Jilin. Creep limit load and safety assessment of pipe bends with inner local wall thinning defect at high temperature[J]. Journal of Mechanical Strength, 2015, 37(2):348-354.
|
[4] |
LEE G H, SEO J K, PAIK J K. Condition assessment of damaged elbow in subsea pipelines[J]. Ships and Offshore Structures, 2017, 12(1): 135-151.
doi: 10.1080/17445302.2015.1116245
|
[5] |
张新生, 张玥. 基于Lasso-PSO-BP神经网络的腐蚀管道失效压力的预测[J]. 材料保护, 2020, 53(04):46-52.
|
|
ZHANG Xinsheng, ZHANG Yue. Prediction of failure pressure of corroded pipeline based on Lasso-PSO-BP neural network[J]. Materials Protection, 2020, 53(04): 46-52.
|
[6] |
KIM J W, YOON M S, PARK C Y. The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows[J]. Nuclear Engineering and Design, 2013, 265(12): 174-183.
doi: 10.1016/j.nucengdes.2013.07.027
|
[7] |
LEE G H, POURARIA H, SEO J K, et al. Burst strength behaviour of an aging subsea gas pipeline elbow in different external and internal corrosion-damaged positions[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(3):435-451.
doi: 10.1515/ijnaoe-2015-0031
|
[8] |
王佳音, 帅健, 刘道乾, 等. 内压作用下含体积型缺陷弯管极限载荷研究[J]. 中国安全生产科学技术, 2019, 15(9):158-163.
|
|
WANG Jiayin, SHUAI Jian, LIU Daoqian, et al. Research on ultimate load of elbow containing volumetric defects under effect of internal pressure[J]. Journal of Safety Science and Technology, 2019, 15(9): 158-163.
|
[9] |
WANG Qingguo, ZHOU Wenxing. Burst pressure models for thin-walled pipe elbows[J]. International Journal of Mechanical Sciences, 2019, 159(5): 20-29.
doi: 10.1016/j.ijmecsci.2019.05.027
|
[10] |
WANG Qingguo, ZHOU Wenxing. A new burst pressure model for thin-walled pipe elbows containing metal-loss corrosion defects[J]. Engineering Structures, 2019, 200: DOI: 10.1016/j.engstruct.2019.109720.
doi: 10.1016/j.engstruct.2019.109720
|
[11] |
贾思奇, 郄彦辉, 李煜彤, 等. 基于遗传-神经网络算法的含均匀腐蚀缺陷油气管线爆破压力预测研究[J]. 中国安全生产科学技术, 2020, 16(12): 105-110.
|
|
JIA Siqi, QIE Yanhui, LI Yutong, et al. Research on burst pressure prediction of oil and gas pipelines with uniform corrosion defects based on GA-BPNNs algorithm[J]. Journal of Safety Science and Technology, 2020, 16(12): 105-110.
|
[12] |
毕傲睿, 骆正山, 宋莹莹, 等. 内腐蚀海底管道剩余强度的FOA-GRNN模型[J]. 中国安全科学学报, 2020, 30(6): 78-83.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.012
|
|
BI Aorui, LUO Zhengshan, SONG Yingying, et al. Residual strength analysis of internally corroded submarine pipeline based on FOA-GRNN model[J]. China Safety Science Journal, 2020, 30(6): 78-83.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.012
|
[13] |
青树勇, 代卿, 郭鸿雁. 基于BP神经网络预测含腐蚀缺陷管道的极限压力[J]. 腐蚀与防护, 2018, 39(8): 634-637.
|
|
QING Shuyong, DAI Qing, GUO Hongyan. Prediction of ultimate pressure of pipeline with corrosion defects based on BP neural network[J]. Corrosion and Protection, 2018, 39(8): 634-637.
|
[14] |
靳文博, 肖荣鸽, 田震, 等. 基于广义回归神经网络的海底腐蚀管道极限承载力预测[J]. 热加工工艺, 2020, 49(8): 58-61.
|
|
JIN Wenbo, XIAO Rongge, TIAN Zhen, et al. Prediction of ultimate bearing capacity of submarine corrosion pipeline based on generalized regression neural network[J]. Hot Working Technology, 2020, 49 (8): 58-61.
|
[15] |
骆正山, 田珮琦. RS-PSO-ELM下腐蚀管道失效压力预测[J]. 中国安全科学学报, 2021, 31(3): 28-34.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.004
|
|
LUO Zhengshan, TIAN Peiqi. Prediction of failure pressure of corrosion pipelines based on RS-PSO-ELM[J]. China Safety Science Journal, 2021, 31(3):28-34.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.004
|
[16] |
马钢. 基于相关性分析和SVM算法的单缺陷管道剩余强度预测[D]. 西安: 西安石油大学, 2020.
|
|
MA Gang. Residual strength prediction of single defect pipeline based on correlation analysis and SVM algorithm[D]. Xi'an: Xi'an Shiyou University, 2020.
|
[17] |
VAPNIK V N. The nature of statistical learning theory[M]. NewYork: Springer-Verlag, 1995: 52-123.
|
[18] |
骆正山, 王浩, 毕傲睿. 基于RS-SVM 的城市埋地燃气管道外腐蚀情况评价[J]. 中国安全科学学报, 2017, 27(6):109-114.
doi: 10.16265/j.cnki.issn1003-3033.2017.06.019
|
|
LUO Zhengshan, WANG Hao, BI Aorui. Evaluation of external corrosion of urban buried gas pipeline based on RS-SVM[J]. China Safety Science Journal, 2017, 27(6):109-114.
doi: 10.16265/j.cnki.issn1003-3033.2017.06.019
|
[19] |
周凌志. 基于有限元模拟的含局部减薄缺陷弯头的爆破压力研究[D]. 天津: 河北工业大学, 2021.
|
|
ZHOU Lingzhi. Study on burst pressure of elbow with local thinning defects based on finite element simulation[D]. Tianjin: Hebei University of Technology, 2021.
|
[20] |
李晓帅. 压力容器与压力管道元件的爆破压力研究[D]. 天津: 河北工业大学, 2017.
|
|
LI Xiaoshuai. Study of bursting pressure of pressure vessel and pressure pipeline components[D]. Tianjin: Hebei University of Technology, 2017.
|
[21] |
周启超, 刘剑, 刘丽, 等. 基于SVM的通风系统故障诊断惩罚系数与核函数系数优化研究[J]. 中国安全生产科学技术, 2019, 15(4): 45-51.
|
|
ZHOU Qichao, LIU Jian, LIU Li, et al. Research on fault fiagnosis penalty coefficient and kernel function coefficient optimization of ventilation system based on SVM[J]. Journal of Safety Science and Technology, 2019, 15(4): 45-51.
|