中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (3): 1-8.doi: 10.16265/j.cnki.issn1003-3033.2024.03.1288

• 安全社会科学与安全管理 •    下一篇

基于RF-SFLA-SVM的装配式建筑高空作业工人不安全行为预警

王军武1,2(), 何娟娟2, 宋盈辉2, 刘一鹏1,2, 陈兆2, 郭婧怡3,**()   

  1. 1 武汉理工大学 三亚科教创新园,海南 三亚 572025
    2 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070
    3 湖北文理学院 土木工程与建筑学院,湖北 襄阳 441053
  • 收稿日期:2023-09-20 修回日期:2024-01-10 出版日期:2024-03-28
  • 通讯作者:
    ** 郭婧怡(1986—),女,湖北襄阳人,博士,讲师,主要从事建筑项目评估等方面的研究。E-mail:
  • 作者简介:

    王军武 (1965—),男,江西德安人,博士,教授,博士生导师,主要从事土木工程建造与管理等方面的研究。E-mail:

  • 基金资助:
    2021年海南省重大科技计划项目(ZDKJ2021024); 三亚崖州湾科技城科技专项项目(SCKJ-JYRC-2022-81); 三亚科教创新园开发基金资助(2022KF0003)

Research on early warning for prefabricated building workers' unsafe behaviors of working at height based on RF-SFLA-SVM

WANG Junwu1,2(), HE Juanjuan2, SONG Yinghui2, LIU Yipeng1,2, CHEN Zhao2, GUO Jingyi3,**()   

  1. 1 Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya Hainan 572025, China
    2 School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan Hubei 430070, China
    3 School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang Hubei 441053, China
  • Received:2023-09-20 Revised:2024-01-10 Published:2024-03-28

摘要:

为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高空作业危险中的PBWUBs的影响因素,并通过RF确定关键预警指标;然后,采用SFLA对SVM的参数进行寻优改进;最后,利用RF-SFLA-SVM预警高空作业PBWUBs,提出应对措施,并与其他预警模型对比。研究结果表明:基于RF-SFLA-SVM预警高空作业PBWUBs,准确率最高,为91.67%,与其他模型的预警性能相比,最高提升14%。研究结果可为高空作业PBWUBs的防控提供参考。

关键词: 随机森林(RF), 蛙跳算法(SFLA), 支持向量机(SVM), 装配式建筑, 高空作业, 不安全行为

Abstract:

In order to effectively provide early warning of the occurrence trend or state of prefabricated building workers' unsafe behaviors (PBWUBs) of working at height, and to enhance the control of PBWUBs, RF-SFLA-SVM model was proposed to conduct an early warning study on workers' unsafe behaviors. Firstly, the SHEL (Software-Hardware-Environment-Liveware) model was used to analyze the factors influencing the unsafe behaviors of prefabricated building workers in danger of working at height. RF was used to determine the key warning indicators. Then SFLA was used to find the best parameters for SVM. Finally, the RF-SFLA-SVM model was used to predict and warn about the unsafe behavioral state of the prefabricated building workers working at height, and its performance was compared with other warning models. The results show that the RF-SFLA-SVM-based warning accuracy of PBWUBs of working at height was the highest, 91.67%, which was a maximum improvement of 14% compared with the warning performance of other models. The research results can give a reference for the control and prevention of PBWUBs working at height.

Key words: random forest (RF), shuffled frog leaping algorithm (SFLA), support vector machine (SVM), prefabricated buildings, working at height, unsafe behaviors

中图分类号: