[1] |
吴耀男, 林雷, 任新温, 等. 一种基于逻辑结构数的改进型FMEA方法[J]. 中国安全科学学报, 2021, 31(10):97-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.10.014
|
|
WU Yaonan, LIN Lei, REN Xinwen, et al. An improved FMEA method based on logical structure number[J]. China Safety Science Journal, 2021, 31(10):97-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.10.014
|
[2] |
CASAMIRRA M, CASTIGLIA F, GIARDINA M, et al. Safety studies of a hydrogen refuelling station: determination of the occurrence frequency of the accidental scenarios[J]. International Journal of Hydrogen Energy, 2009, 34(14):5846-5854.
doi: 10.1016/j.ijhydene.2009.01.096
|
[3] |
桑海泉, 谷海波, 康荣学. 加油站安全监控预警与应急管理系统[J]. 中国公共安全:学术版, 2010(4):55-60.
|
|
SANG Haiquan, GU Haibo, KANG Rongxue. Safety monitoring and early-warning and emergency management system of petrol station[J]. China Public Security, 2010(4):55-60.
|
[4] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
doi: 10.1126/science.1127647
pmid: 16873662
|
[5] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
doi: 10.1162/neco.2006.18.7.1527
pmid: 16764513
|
[6] |
LIN Tsungyi, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]. Proceeding in European Conference on Computer Vision, 2014:740-755.
|
[7] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.
|
[8] |
林俊, 党伟超, 潘理虎, 等. 基于YOLO的安全帽检测方法[J]. 计算机系统应用, 2019, 28(9):174-179.
|
|
LIN Jun, DANG Weichao, PAN Lihu, et al. Safety helmet detection based on YOLO[J]. Computer Systems & Applications, 2019, 28(9):174-179.
|
[9] |
LI Yange, WEI Han, HAN Zheng, et al. Deep learning-based safety helmet detection in engineering management based on convolutional neural networks[J]. Advances in Civil Engineering, 2020:DOI: 10.1155/2020/9703560.
|
[10] |
张明媛, 曹天卓, 赵雪峰. 基于ANN识别施工人员跌落险兆事故的研究[J]. 安全与环境学报, 2018, 18(5):1703-1710.
|
|
ZHANG Mingyuan, CAO Tianzhuo, ZHAO Xuefeng. Approach to detecting and identifying the near-miss falls of the construction workers via the ANN system[J]. Journal of Safety and Environment, 2018, 18(5):1703-1710.
|
[11] |
ZHAO Rentao, WANG Mengyi, ZHAI Zilong, et al. Indoor smoking behavior detection based on YOLO-V3-tiny[C]. 2019 Chinese Automation Congress, 2019:3477-3481.
|
[12] |
郑志强. 基于卷积神经网络的目标检测算法研究与应用[D]. 长春: 长春理工大学, 2019.
|
|
ZHENG Zhiqiang. Research and application of target detection algorithms based on convolutional neural network[D]. Changchun: Changchun University of Science and Technology, 2019.
|
[13] |
REDMON J, FARHADI A. YOLO-V3: an incremental improvement[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2018:89-95.
|
[14] |
WANG Haikuan, HU Zhaoyan, GUO Yuanjun, et al. A real-time safety helmet wearing detection approach based on CSYOLO-V3[J]. Applied Sciences, 2020, 10(19):6732-6746.
doi: 10.3390/app10196732
|
[15] |
林柏泉, 周延, 刘贞堂. 安全系统工程[M].徐州. 中国矿业大学出版社, 2005:23-24.
|
[16] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
|
[17] |
EVERINGHAM M, ESLAMI S M A, VAN G L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136.
doi: 10.1007/s11263-014-0733-5
|