[1] |
DOC9966-2016, Manual for the oversight of fatigue management approaches[S].
|
[2] |
靳慧斌, 张静, 吕川. HRV在管制员疲劳检测中的适用性[J]. 北京航空航天大学学报, 2018, 44(11): 2292-2298.
|
|
JIN Huibin, ZHANG Jing, LYU Chuan. Application of HRV in air traffic controllers' fatigue detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2292-2298.
|
[3] |
王莉莉, 朱敏. 基于脑电数据的管制架次对管制员疲劳影响研究[J]. 中国安全科学学报, 2021, 31(2): 173-178.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.024
|
|
WANG Lili, ZHU Min. Research on influence of controlled sorties on controllers' fatigue based on EEG data[J]. China Safety Science Journal, 2021, 31(2): 173-178.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.024
|
[4] |
JI Yingyu, WANG Shigang, LU Yang, et al. Eye and mouth state detection algorithm based on contour feature extraction[J]. Journal of Electronic Imaging, 2018, 27(5): DOI: 10.1117/1.JEI.27.5.051205.
doi: 10.1117/1.JEI.27.5.051205
|
[5] |
YANG Hao, LIU Li, MIN Weidong, et al. Driver yawning detection based on subtle facial action recognition[J]. IEEE Transactions on Multimedia, 2020, 23: 572-583.
doi: 10.1109/TMM.2020.2985536
|
[6] |
HUANG Rui, WANG Yan, LI Zijian, et al. RF-DCM: Multi-granularity deep convolutional model based on feature recalibration and fusion for driver fatigue detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 630-640.
doi: 10.1109/TITS.2020.3017513
|
[7] |
卜建, 刘银鑫, 王艳军. 空中交通管制员的眼动行为与疲劳关系[J]. 航空学报, 2017, 38(增1): 57-62.
|
|
BU Jian, LIU Yinxin, WANG Yanjun. Relationship between air traffic controllers' eye movement and fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 57-62.
|
[8] |
刘忠育. 基于深度学习的矿工不安全行为识别方法研究[D]. 徐州: 中国矿业大学, 2021.
|
|
LIU Zhongyu. Research on recognition methods of miners' unsafe behavior based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[9] |
崔铁军, 王凌霄. YOLOv4目标检测算法在煤矿工人口罩佩戴监测工作中的应用研究[J]. 中国安全生产科学技术, 2021, 17(10): 66-71.
|
|
CUI Tiejun, WANG Lingxiao. Research on application of YOLOv4 object detection algorithm in monitoring on masks wearing of coal miners[J]. Journal of Safety Science and Technology, 2021, 17(10): 66-71.
|
[10] |
刘耀, 焦双健. ST-GCN在建筑工人不安全动作识别中的应用[J]. 中国安全科学学报, 2022, 32(4): 30-35.
doi: 10.16265/j.cnki.issn1003-3033.2022.04.005
|
|
LIU Yao, JIAO Shuangjian. Application of ST-GCN in unsafe action identification of construction workers[J]. China Safety Science Journal, 2022, 32(4): 30-35.
doi: 10.16265/j.cnki.issn1003-3033.2022.04.005
|
[11] |
FANG Weili, LOVE P E D, LUO Hanbin, et al. Computer vision for behaviour-based safety in construction: a review and future directions[J]. Advanced Engineering Informatics, 2020, 43: DOI: 10.1016/j.aei.2019.100980.
doi: 10.1016/j.aei.2019.100980
|
[12] |
KWON Seongkyung, SEO Jihwan, YUN Junyoung, et al. Driving behavior classification and sharing system using CNN-LSTM approaches and V2X communication[J]. Applied Sciences, 2021, 11(21): 8856-8878.
doi: 10.3390/app11198856
|
[13] |
QI Mengshi, WANG Yunhong, QIN Jie, et al. StagNet: an attentive semantic RNN for group activity and individual action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(2): 549-565.
doi: 10.1109/TCSVT.76
|
[14] |
DING Lieyun, FANG Weili, LUO Hanbin, et al. A deep hybrid learning model to detect unsafe behavior: integrating convolution neural networks and long short-term memory[J]. Automation in Construction, 2018, 86: 118-124.
doi: 10.1016/j.autcon.2017.11.002
|
[15] |
温廷新, 王贵通, 孔祥博, 等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报, 2020, 30(3):41-46.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
|
|
WEN Tingxin, WANG Guitong, KONG Xiangbo, et al. Identification of miners' unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Journal, 2020, 30(3): 41-46.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
|
[16] |
YAN Sijie, XIONG Yuanjun, LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. Thirty-second AAAI Conference on Artificial Intelligence, 2018: 8561-8568.
|