[1] |
HU Xinyun, LODEWIJKS G. Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: the value of differentiation of sleepiness and mental fatigue[J]. Journal of Safety Research, 2020, 72:173-187.
doi: S0022-4375(19)30673-5
pmid: 32199560
|
[2] |
KHAROUFAH H, MURRAY J, BAXTER G, et al. A review of human factors causations in commercial airtransport accidents and incidents: from to 2000-2016[J]. Progress in Aerospace Sciences, 2018, 99:1-13.
doi: 10.1016/j.paerosci.2018.03.002
|
[3] |
XU Bin, WU Qi, XI Chen, et al. Recognition of the fatigue status of pilots using BF-PSO optimized multi-class GP classification with sEMG signals[J]. Reliability Engineering & System Safety, 2020,199:DOI: 10.1016/j.ress.2020.106930.
doi: 10.1016/j.ress.2020.106930
|
[4] |
鲁胜华. 基于眼动仪的飞行员疲劳判定方法研究[D]. 天津: 中国民航大学, 2014.
|
|
LU Shenghua. Pilot fatigue judging method based on eye tracking system research[D]. Tianjin: Civil Aviation University of China, 2014.
|
[5] |
PAN Ting, WANG Haibo, SI Haiqing, et al. Identification of pilots' fatigue status based on electrocardiogram signals[J]. Sensors, 2021,21: DOI: 10.3390/s21093003.
doi: 10.3390/s21093003
|
[6] |
QIN Hao, ZHOU Xiaozhou, OU Xuhan, et al. Detection of mental fatigue state using heart rate variability and eye metrics during simulated flight[J]. Human Factors and Ergonomics in Manufacturing & Service Industries, 2021, 31(6): 637-651.
|
[7] |
孙敬周. 基于生理指标测量的飞行学员疲劳特性与飞行品质评估研究[D]. 广汉: 中国民用航空飞行学院, 2018.
|
|
SUN Jingzhou. Study on fatigue characteristics and flight quality evaluation of flying students based on physiological index measurement[D]. Guanghan: Civil Aviation Flight University of China, 2018.
|
[8] |
范晓丽, 牛海燕, 周前祥, 等. 基于EEG的脑力疲劳特征研究[J]. 北京航空航天大学学报, 2016, 42(7):1406-1413.
|
|
FAN Xiaoli, NIU Haiyan, ZHOU Qianxiang, et al. Mental fatigue characteristics based on EEG analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1406-1413.
|
[9] |
裘旭益, 仇峰, 吴奇. 面向飞行员疲劳状态监测的脑认知深度模型研究[J]. 航空电子技术, 2020, 51(4):13-19.
|
|
QIU Xuyi, QIU Feng, WU Qi. Brain cognitive deep model for pilot fatigue state monitoring[J]. Avionics Technology, 2020, 51(4):13-19.
|
[10] |
BENDAK S, RASHID H. Fatigue in aviation: a systematic review of the literature[J]. International Journal of Industrial Ergonomics, 2020,76:DOI : 10.1016/j.ergon.2020.102928.
doi: 10.1016/j.ergon.2020.102928
|
[11] |
THOMAS L C, GAST C, GRUBE R, et al. Fatigue detection in commercial flight operations: results using physiological measures[J]. Procedia Manufacturing, 2015, 3:2357-2364.
doi: 10.1016/j.promfg.2015.07.383
|
[12] |
胡习之, 黄冰瑜. 基于面部特征分析的疲劳驾驶检测方法[J]. 科学技术与工程, 2021, 21(4):1629-1636.
|
|
HU Xizhi, HUANG Bingyu. Fatigue driving detection system based on face feature analysis[J]. Science Technology and Engineering, 2021, 21(4):1629-1636.
|
[13] |
王莉莉, 朱敏. 基于脑电数据的管制架次对管制员疲劳影响研究[J]. 中国安全科学学报, 2021, 31(2):173-178.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.024
|
|
WANG Lili, ZHU Min. Research on influence of controlled sorties on controllers' fatigue based on EEG data[J]. China Safety Science Journal, 2021, 31(2) : 173-178.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.024
|
[14] |
ESPOSITO A, ALAIMO A, ORLANDO C. Aircraft pilots workload analysis: heart rate variability objective measures and NASA-task load index subjective evaluation[J]. Aerospace, 2020, 7:137-153.
doi: 10.3390/aerospace7090137
|
[15] |
VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995:23-105.
|
[16] |
武琳玉, 梁伟, 沙夺林. 油气站场典型设备的焊缝缺陷检测与识别方法[J]. 中国安全科学学报, 2020, 30(11):108-113.
doi: 10.16265/j.cnki.issn 1003-3033.2020.11.016
|
|
WU Linyu, LIANG Wei, SHA Duolin. Weld defect detection and identification method of typical equipment in oil-gas station[J]. China Safety Science Journal, 2020, 30(11):108-113.
doi: 10.16265/j.cnki.issn 1003-3033.2020.11.016
|
[17] |
CHANG Chihchung, LIN Chihjen. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-35.
|