| [1] | 赵晓东, 杲旭日, 张泰丽, 等. 基于GIS的潜势度地质灾害预警预报模型研究:以浙江省温州市为例[J]. 地理与地理信息科学, 2018, 34(5):7-12. | 
																													
																						|  | ZHAO Xiaodong, GAO Xuri, ZHANG Taili, et al.  Potential degree index model of early warning system for geological hazards: a case study of Wenzhou in Zhejiang province[J]. Geography and Geo-Information Science, 2018, 34(5):7-12. | 
																													
																						| [2] | 赵晓东, 王顺东, 张泰丽, 等. 不同精度下地表稳定性模型的评价[J]. 科学技术与工程, 2020, 20(25):10 207-10 213. | 
																													
																						|  | ZHAO Xiaodong, WANG Shundong, ZHANG Taili, et al.  Model evaluation of geohazard susceptibility in different resolutions[J]. Science Technology and Engineering, 2020, 20(25):10 207-10 213. | 
																													
																						| [3] | 周明浪, 邵新民, 罗美芳. 浙江温州滑坡地质灾害预警方法及应用[J]. 中国地质灾害与防治学报, 2014, 25(2):90-97. | 
																													
																						|  | ZHOU Minglang, SHAO Xinmin, LUO Meifang. Method and application of landslide geological hazard early-warning in Wenzhou city[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(2):90-97. | 
																													
																						| [4] | POURGHASEMI H R, RAHMATI O. Prediction of the landslide susceptibility: which algorithm, which precision?[J]. Catena, 2018, 62(5):177-192. | 
																													
																						| [5] | FEIZIZADAH B, ROODPOSHTI M S, BLASCHKE T, et al.  Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping[J]. Arabian Journal of Geosciences, 2017, 10(5):1-13.  doi: 10.1007/s12517-016-2714-1
 | 
																													
																						| [6] | 夏辉, 殷坤龙, 梁鑫, 等. 基于SVM-ANN模型的滑坡易发性评价:以三峡库区巫山县为例[J]. 中国地质灾害与防治学报, 2018, 29(5):13-19. | 
																													
																						|  | XIA Hui, YIN Kunlong, LIANG Xin, et al.  Landslide susceptibility assessment based on SVM-ANN models: a case study for Wushan county in the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5):13-19. | 
																													
																						| [7] | 王念秦, 郭有金, 刘铁铭, 等. 基于SVM-LR模型的滑坡易发性评价:以临潼区为例[J]. 科学技术与工程, 2019, 19(30): 62-69. | 
																													
																						|  | WANG Nianqin, GUO Youjin, LIU Tieming, et al.  Assessment of landslide susceptibility based on SVM-LR model: a case study of Lintong district[J]. Science Technology and Engineering, 2019, 19(30): 62-69. | 
																													
																						| [8] | 卫星君, 赵晓萌, 马长玲, 等. 降雨型滑坡灾害的约简和逻辑回归预测模型[J]. 中国安全科学学报, 2018, 28(8):1-6.  doi: 10.16265/j.cnki.issn1003-3033.2018.08.001
 | 
																													
																						|  | WEI Xingjun, ZHAO Xiaomeng, MA Changling, et al. Reduction and logistic regression model for prediction of rainfall landslides disasters[J]. China Safety Science Journal, 2018, 28(8):1-6.  doi: 10.16265/j.cnki.issn1003-3033.2018.08.001
 | 
																													
																						| [9] | 毛志勇, 黄春娟, 路世昌. 基于PSO-SVM的砂土地震液化预测模型[J]. 中国安全科学学报, 2018, 28(3):25-30.  doi: 10.16265/j.cnki.issn1003-3033.2018.03.005
 | 
																													
																						|  | MAO Zhiyong, HUANG Chunjuan, LU Shichang. PSO-SVM based model for prediction of sandy soil liquefaction[J]. China Safety Science Journal, 2018, 28(3):25-30.  doi: 10.16265/j.cnki.issn1003-3033.2018.03.005
 | 
																													
																						| [10] | 王杰, 罗周全, 秦亚光. 基于随机森林理论的采场稳定性预测研究[J]. 中国安全科学学报, 2018, 28(3):155-160.  doi: 10.16265/j.cnki.issn1003-3033.2018.03.027
 | 
																													
																						|  | WANG Jie, LUO Zhouquan, QIN Yaguang, et al.  Prediction of stope stability based on random forest[J]. China Safety Science Journal, 2018, 28(3):155-160.  doi: 10.16265/j.cnki.issn1003-3033.2018.03.027
 | 
																													
																						| [11] | CHAPEELE O, HAFFNER, VAPNIK V N. Support vector machines for histogram-based image classification[J]. IEEE Transactions on Neural Networks, 1999, 10(5):1055-1064.  doi: 10.1109/72.788646
 | 
																													
																						| [12] | 周志华. 机器学习[M]. 北京: 清华大学出版社,2016: 121-137. | 
																													
																						|  | ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press,2016:121-137. | 
																													
																						| [13] | BURGES C J. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(9):121-167.  doi: 10.1023/A:1009715923555
 | 
																													
																						| [14] | 汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究, 2014, 31(5):1281-1286. | 
																													
																						|  | WANG Haiyan, LI Jianhui, YANG Fenglei. Overview of support vector machine analysis and algorithm[J]. Application Research of Computers, 2014, 31(5):1281-1286. | 
																													
																						| [15] | LI Chenghsuan, HO Hsinhua, LIU Yulung, et al.  An automatic method for selecting the parameter of the normalized kernel function to support vector machines[J]. Journal of Information and Science Engineering, 2012, 28(1):1-15. | 
																													
																						| [16] | 刘志刚, 李德仁, 秦前清, 等. 支持向量机在多类分类问题中的推广[J]. 计算机工程与应用, 2004, 40(7): 10-13. | 
																													
																						|  | LIU Zhigang, LI Deren, QIN Qianqing, et al.  An analytical overview of methods for multi-category support vector machines[J]. Computer Engineering and Applications, 2004, 40(7):10-13. |