中国安全科学学报 ›› 2022, Vol. 32 ›› Issue (12): 118-124.doi: 10.16265/j.cnki.issn1003-3033.2022.12.0134

• 安全工程技术 • 上一篇    下一篇

基于机器学习的煤自然发火期预测

张利冬1(), 宋泽阳1,2,**(), 罗振敏1,3, 赵珊珊1   

  1. 1 西安科技大学 安全科学与工程学院,陕西 西安 710054
    2 陕西省煤火灾害防治重点实验室,陕西 西安710054
    3 陕西省工业过程安全与应急救援工程技术研究中心,陕西 西安 710054
  • 收稿日期:2022-07-15 修回日期:2022-10-13 出版日期:2022-12-28
  • 通讯作者:
    ** 宋泽阳(1986—),男,湖南长沙人,博士,副教授,主要从事能源与化工安全、节能环保方面的研究。E-mail:
  • 作者简介:

    张利冬 (1998—),女,山东临沂人,硕士研究生,研究方向为煤自燃防治技术。E-mail:

  • 基金资助:
    国家自然科学基金资助(51804168); 陕西省高层次青年科技人才项目

Prediction of coal spontaneous combustion period based on machine learning

ZHANG Lidong1(), SONG Zeyang1,2,**(), LUO Zhenmin1,3, ZHAO Shanshan1   

  1. 1 School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054,China
    2 Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi'an Shaanxi 710054, China
    3 Shaanxi Engineering Research Center for Industrial Process Safety and Emergency Rescue, Xi'an Shaanxi 710054,China
  • Received:2022-07-15 Revised:2022-10-13 Published:2022-12-28

摘要:

为快速准确地预测煤自然发火期,首先基于大型煤自燃低温氧化试验及文献数据组成数据集,并考虑煤自燃影响因素众多且与发火期存在复杂的非线性关系,建立包含煤自然发火期、环境温度、煤炭热值、水分等参数的数据集;其次采用多层感知机(MLP)和随机森林(RF)等机器学习方法建立煤自然发火期预测模型,表征内部因素和外部因素对发火期的影响;同时为增强模型的拟合能力和泛化能力,利用特征工程研究特征变量的相关性,以筛选模型的输入特征;然后利用网格搜索法优化模型超参数,以提高模型的预测能力;最后利用学习曲线法评估模型状态,防止模型过拟合。结果表明:RF和MLP模型均能预测煤自然发火期,RF模型的泛化能力更高;RF和MLP模型预测的平均绝对误差(MAE)分别为9.34天和12.10天,说明机器学习模型可同时考虑多个内外影响因素的复杂作用。

关键词: 煤自然发火期, 机器学习, 预测模型, 随机森林(RF), 多层感知机(MLP)

Abstract:

In order to predict the spontaneous combustion period of coal quickly and accurately, firstly, based on the large-scale coal spontaneous combustion low-temperature oxidation test and literature data, the data was composed, and considering the many influencing factors of coal spontaneous combustion and the complex nonlinear relationship with the combustion period, the data set including the spontaneous combustion period of coal, ambient temperature, coal calorific value, moisture and other parameters was established. Secondly, machine learning models such as MLP and RF are used to establish a coal spontaneous combustion period prediction model to characterize the influence of internal and external factors on the combustion period. At the same time, in order to enhance the fitting ability and generalization ability of the model, feature engineering is used to study the correlation of feature variable to filter the input features of the model. Then, the gridsearch method is used to optimize the model hyperparameters to improve the prediction ability of the model. Finally, the learning curve method is used to evaluate the model state to prevent overfitting. The results show that both RF and MLP models can predict cola spontaneous combustion period, and the generalization capability of the RF model is higher. The mean absolute error (MAE) predicted by the RF and MLP models were 9.34 days and 12.10 days, respectively, indicating that the machine learning model can consider the complex effects of multiple internal and external factors.

Key words: coal spontaneous combustion period, machine learning, prediction model, random forest (RF), multilayer perceptron (MLP)