[1] |
BENTAMA A, KHATORY A, MILLOT M. Spatial analysis of bus accidents in France[C]. Proceedings of 2017 International Colloquium on Logistics and Supply Chain Management, 2017: 124-129.
|
[2] |
WU Xiaolin, ZHANG Huimin, XIAO Wangxin, et al. Are bus company regulations associated with crash risk? findings from a retrospective survey in four Chinese cities[J]. International Journal of Environmental Research and Public Health, 2019, 16(8): DOI: 10.3390/ijerph16081342.
doi: 10.3390/ijerph16081342
|
[3] |
GELAU C, GASSER T M, SEECK A. Fahrerassistenz und verkehrssicherheit[M]. Wiesbaden: Vieweg+Teubner Verlag, 2009: 24-32.
|
[4] |
KAPLAN S, PRATO C G. Cyclist-motorist crash patterns in denmark: a latent class clustering approach[J]. Traffic injury prevention, 2013, 14(7): 725-733.
doi: 10.1080/15389588.2012.759654
pmid: 23944832
|
[5] |
TSENG C M. Social-demographics, driving experience and yearly driving distance in relation to a tour bus driver's at-fault accident risk[J]. Tourism Management, 2012, 33(4):910-915.
doi: 10.1016/j.tourman.2011.09.011
|
[6] |
JAVADREZA V, AFSHIN S M, ZAHRA T, et al. Aberrant driving behaviour, risk involvement, and their related factors among taxi drivers[J]. International Journal of Environmental Research and Public Health, 2018, 15 (8): DOI: 10.3390/ijerph15081626.
doi: 10.3390/ijerph15081626
|
[7] |
GOH K, CURRIE G, SARVI M, et al. Factors affecting the probability of bus drivers being at-fault in bus-involved accidents[J]. Accident Analysis and Prevention, 2014, 66:20-26.
doi: 10.1016/j.aap.2013.12.022
|
[8] |
USECHE S A, CENDALES B, ALONSO F, et al. A matter of style? Testing the moderating effect of driving styles on the relationship between job strain and work-related crashes of professional drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 72: 307-317.
doi: 10.1016/j.trf.2020.05.015
|
[9] |
AREZES P M, SÉRGIO MIGUEL A. The role of safety culture in safety performance measurement[J]. Measuring Business Excellence, 2003, 7(4):20-28.
doi: 10.1108/13683040310509287
|
[10] |
王晓勇, 罗珅, 任杰, 等. 公交驾驶员违规间隔时间及影响因素研究[J]. 中国安全科学学报, 2019, 29(6):128-133.
doi: 10.16265/j.cnki.issn1003-3033.2019.06.021
|
|
WANG Xiaoyong, LUO Shen, REN Jie, et al. Research on interval time of traffic violations for bus drivers and its influencing factors[J]. China Safety Science Journal, 2019, 29(6):128-133.
doi: 10.16265/j.cnki.issn1003-3033.2019.06.021
|
[11] |
林庆丰, 邓院昌, 张圆, 史晨军. 公交驾驶员驾驶愤怒量表的编制及初步应用[J]. 中国安全科学学报, 2018, 28(6):49-54.
doi: 10.16265/j.cnki.issn1003-3033.2018.06.009
|
|
LIN Qingfeng, DENG Yuanchang, ZHANG Yuan, SHI Chenjun. Development of driving anger scale for bus drivers and its preliminary application[J]. China Safety Science Journal, 2018, 28(6):49-54.
doi: 10.16265/j.cnki.issn1003-3033.2018.06.009
|
[12] |
闭小梅, 闭瑞华. KNN算法综述[J]. 科技创新导报, 2009(14): 31.
|
|
BI Xiaomei, BI Ruihua. Review of KNN algorithms[J]. Science and Technology Innovation Herald, 2009(14):31.
|
[13] |
CHANDRASHEKAR G, SAHIN F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40(1): 16-28.
|
[14] |
DIETTERICH T G. Ensemble methods in machine learning[C]. International Workshop on Multiple Classifier Systems, 2000: 1-15.
|
[15] |
何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327-336.
|
|
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336.
|
[16] |
CHAWLA N, BOWYER K, HALL L, et al. SMOTE: Synthetic minority over-sampfing technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
doi: 10.1613/jair.953
|
[17] |
FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29 (5) :1189-1232.
doi: 10.1214/aos/1013203450
|
[18] |
DRUMMOND C, HOLTE R C. Explicitly representing expected cost: an alternative to ROC representation[C]. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000: 198-207.
|
[19] |
NASROLLAHZADEH A A, SOFI A R, RAVANI B. Identifying factors associated with roadside work zone collisions using machine learning techniques[J]. Accident Analysis & Prevention, 2021, 158(10): DOI: 10.1016/j.aap.2021.106203.
doi: 10.1016/j.aap.2021.106203
|
[20] |
FIORENTINI N, LOSA M. Handling imbalanced data in road crash severity prediction by machine learning algorithms[J]. Infrastructures, 2020, 5(7): DOI: 61. 10.3390/infrastructures5070061.
doi: 61. 10.3390/infrastructures5070061
|