中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (9): 19-26.doi: 10.16265/j.cnki.issn1003-3033.2024.09.0008

• 安全社会科学与安全管理 • 上一篇    下一篇

基于命名实体识别的水电工程施工安全规范实体识别模型

陈述1,2(), 张超2, 陈云1,2,**(), 张光飞3, 李智3   

  1. 1 三峡大学 水电工程施工与管理湖北省重点实验室,湖北 宜昌 443002
    2 三峡大学水利与环境学院,湖北 宜昌 443002
    3 中国长江三峡集团有限公司,湖北 武汉 430010
  • 收稿日期:2024-03-15 修回日期:2024-06-20 出版日期:2024-09-28
  • 通信作者:
    ** 陈云(1993—),男,湖北枝江人,博士,副教授,主要从事安全管理研究。E-mail:
  • 作者简介:

    陈 述 (1986—),男,湖北英山人,博士,教授,主要从事安全管理研究。E-mail:

    张光飞, 高级工程师;

    李智, 正高级工程师

  • 基金资助:
    国家自然科学基金资助(52479127); 国家自然科学基金资助(52079073); 国家自然科学基金资助(52209163)

Model of identifying entities of safety specification for hydropower engineering construction

CHEN Shu1,2(), ZHANG Chao2, CHEN Yun1,2,**(), ZHANG Guangfei3, LI Zhi3   

  1. 1 Hubei Key Laboratory of Hydropower Engineering Construction and Management, China Three Gorges University, Yichang Hubei 443002, China
    2 College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang Hubei 443002, China
    3 China Three Gorges Corporation, Wuhan Hubei 430010, China
  • Received:2024-03-15 Revised:2024-06-20 Published:2024-09-28

摘要:

为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全规范的命名实体识别模型;以《水利水电工程施工安全防护技术规范》(SL714—2015)为例,计算命名实体识别模型精确率。结果表明:BERT-BILSTM-CRF模型准确率为94.35%,相比于3种传统方法,准确率显著提高。研究成果有助于水电工程施工安全规范知识智能管理,为施工安全隐患智能判别提供支撑。

关键词: 命名实体识别, 水电工程施工, 安全规范, 双向编码器表征法(BERT), 双向长短期记忆神经网络(BILSTM), 条件随机场(CRF)

Abstract:

To accurately identify the entities of hydropower engineering construction safety specification, the named entity recognition model of hydropower engineering construction safety specification was constructed. The rich semantic information in the text was mined by the BERT. The semantic features of the specification were extracted by using BILSTM. The dependency relationship between entities was analyzed by relying on CRFs. The Technical Specification for Safety Protection in Construction of Water Conservancy and Hydropower Projects (SL714-2015) was taken as an example to calculate the named entity recognition model accuracy rate. The results show that the accuracy rate of the BERT-BILSTM-CRF model is 94.21%. Compared with the three traditional methods, the accuracy is significantly improved. The research will effectively assist in the intelligent management of safety regulations knowledge for hydropower engineering construction, and provide important support for the intelligent identification of construction safety hazards.

Key words: named entity identification, hydropower engineering construction, safety specification, bidirectional encoder representation from transformers (BERT), bi-directional long and short-term memory neural network (BILSTM), conditional random field (CRF)

中图分类号: