中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (9): 191-201.doi: 10.16265/j.cnki.issn1003-3033.2024.09.2063

• 公共安全 • 上一篇    下一篇

基于特征工程的S-FCN火灾图像检测方法

李海1(), 熊升华1, 孙鹏2   

  1. 1 中国民用航空飞行学院 民航安全工程学院,四川 德阳 618307
    2 中国刑事警察学院 公安信息技术与情报学院,辽宁 沈阳 110036
  • 收稿日期:2024-03-11 修回日期:2024-06-14 出版日期:2024-09-28
  • 作者简介:

    李 海 (1989—),男,甘肃定西人,博士研究生,讲师,主要从事机器视觉、图像处理、智能模式识别方面的研究。E-mail:

    熊升华, 副教授;

    孙鹏, 教授

  • 基金资助:
    中央高校基本科研业务费专项资金资助(Q2023-051); 中央高校基本科研业务费专项资金资助(J2023-062); 四川省科技厅重点研发计划项目(2022YFG0213); 民机火灾科学与安全工程四川省重点实验室自主资助项目(MZ2022JB03)

S-FCN fire image detection method based on feature engineering

LI Hai1(), XIONG Shenghua1, SUN Peng2   

  1. 1 College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan Sichuan 618307, China
    2 School of Public Security Information Technology, Criminal Investigation Police University of China, Shenyang Liaoning 110036,China
  • Received:2024-03-11 Revised:2024-06-14 Published:2024-09-28

摘要:

针对复杂背景下火灾图像检测深度学习算法存在的计算复杂度高、检测实时性差等问题,提出一种基于特征工程的单隐层全连接网络(S-FCN)火灾图像检测方法。首先,从图像中提取多色彩空间颜色特征,并使用互信息量进行多色彩空间颜色特征降维;其次,简化深度学习模型的网络结构,将单隐层全连接网络作为其主干网络,其中,多色彩空间下的颜色特征能够更好地表征火灾烟雾与火焰,多色彩空间颜色特征降维能够有效降低输入特征的冗余度,单隐层全连接网络能够有效减少模型在传递过程中的参数数量;最后,将该方法在真实的复杂背景火灾图像数据集上进行试验评估。结果表明:所提方法取得的检测精度为93.83%,取得的检测实时性帧率为10 869帧/s,能够实现复杂场景下高精度、高速度的火灾图像检测。

关键词: 特征工程, 单隐层全连接网络(S-FCN), 火灾图像, 检测方法, 色彩空间, 特征降维

Abstract:

The S-FCN fire image detection method based on feature engineering was proposed to address the issues of high computational complexity and poor real-time performance of deep learning algorithms for fire image detection in complex backgrounds. Firstly, this method extracted color features from images in multiple color spaces and reduced the dimensionality of these features using mutual information. Secondly, the network structure of the deep learning model was simplified by using a single hidden layer of a fully connected network as its backbone. The color features in multiple color spaces can better represent fire smoke and flames, and reducing the dimensionality of color features in multiple color spaces effectively reduces the redundancy of input features. The single hidden layer fully connected network can significantly reduce the number of parameters during the model propagation process. Finally, this method was evaluated on a real and complex background fire image dataset. The experimental results show that the detection accuracy achieved by this method is 93.83%, and the real-time frame rate is 10 869 f/s. This method achieves high accuracy and high-speed fire image detection in complex scenes.

Key words: feature engineering, single hidden layer fully connected network(S-FCN), fire image, detection method, color space, feature dimensionality reduction

中图分类号: