[1] |
王子辰, 陈晓艳, 王倩, 等. 基于残差自注意力连接的深度电学层析成像方法[J]. 仪器仪表学报, 2023, 44(5):288-301.
|
|
WANG Zichen, CHEN Xiaoyan, WANG Qian, et al. Deep electrical tomography imaging method based on residual self-attention connection[J]. Journal of Instrumentation, 2023, 44 (5): 288-301.
|
[2] |
李丹, 王慢慢, 刘俊德, 等. 基于轻量级卷积神经网络的带钢表面缺陷识别[J]. 仪器仪表学报, 2022, 43(3):240-248.
|
|
LI Dan, WANG Manman, LIU Junde, et al. Surface defect identification of strip steel based on lightweight convolutional neural networks[J]. Journal of Instrumentation, 2022, 43 (3): 240-248.
|
[3] |
杨其睿. 基于改进的DenseNet深度网络火灾图像识别算法[J]. 计算机应用与软件, 2019, 36(2):258-263.
|
|
YANG Qirui. Improved densenet deep network fire image recognition algorithm[J]. Computer Application and Software, 2019, 36 (2): 258-263.
|
[4] |
YANG Yi, PAN Mengyi, LI Pu, et al. Development and optimization of image fire detection on deep learning algorithms[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(11):5089-5 095.
|
[5] |
VENANCIO D, LISBOA A C, BARBOSA A V. An automatic fire detection system based on deep convolutional neural networks for low-power, resource-constrained devices[J]. Neural Computing and Applications, 2022, 34(18): 15 349-15 368.
|
[6] |
MAJID S, ALENEZI F, MASOOD S, et al. Attention based CNN model for fire detection and localization in real-world images[J]. Expert Systems with Applications, 2022, 189:DOI: 10.1016/j.eswa.2021.116114.
|
[7] |
KHAN A, HASSAN B, KHAN S, et al. DeepFire: a novel dataset and deep transfer learning benchmark for forest fire detection[J]. Mobile Information Systems, 2022, 2022(6): DOI: 10.1155/2022/5358359.
|
[8] |
DOGAN S, BARUA P D, KUTLU H, et al. Automated accurate fire detection system using ensemble pretrained residual network[J]. Expert Systems with Applications, 2022, 203: DOI: 10.1016/j.eswa.2022.117407.
|
[9] |
PINCOTT J, TIEN P W, WEI S, et al. Indoor fire detection utilizing computer vision-based strategies[J]. Journal of Building Engineering, 2022, 61: DOI: 10.1016/j.jobe.2022.105154.
|
[10] |
MUKHIDDINOV M, ABDUSALOMOV A B, CHO J. Automatic fire detection and notification system based on improved yolov4 for the blind and visually impaired[J]. Sensors, 2022, 22(9):DOI: 10.3390/s22093307.
|
[11] |
DILSHAD N, KHAN T, SONG J. Efficient deep learning framework for fire detection in complex surveillance environment[J]. Computer Systems Science and Engineering, 2023, 46(1): 749-764.
|
[12] |
AN Qing, CHEN Xijiang, ZHANG Junqian, et al. A robust fire detection model via convolution neural networks for intelligent robot vision sensing[J]. Sensors, 2022, 22(8): DOI: 10.3390/s22082929.
|
[13] |
AHN Y, CHOI H, KIM B S. Development of early fire detection model for buildings using computer vision-based CCTV[J]. Journal of Building Engineering, 2023, 65: DOI: 10.1016/j.jobe.2022.105647.
|
[14] |
HUANG Lida, LIU Gang, WANG Yan, et al. Fire detection in video surveillances using convolutional neural networks and wavelet transform[J]. Engineering Applications of Artificial Intelligence, 2022, 110:DOI: 10.1016/j.engappai.2022.104737.
|
[15] |
KHAN Z A, HUSSAIN T, ULLAH F U M, et al. Randomly initialized CNN with densely connected stacked autoencoder for efficient fire detection[J]. Engineering Applications of Artificial Intelligence, 2022, 116: DOI: 10.1016/j.engappai.2022.105403.
|
[16] |
MAHMOUD H A, ALHARBI A H, ALGHAMDI N S. Time-efficient fire detection convolutional neural network coupled with transfer learning[J]. Intelligent Automation & Soft Computing, 2022, 31(3):1393-1402.
|
[17] |
LI Yuming, ZHANG Wei, LIU Yanyan, et al. A visualized fire detection method based on convolutional neural network beyond anchor[J]. Applied Intelligence, 2022, 52(11): 13 280-13 295.
|
[18] |
ZHANG Rong, ZHANG Wei, LIU Yanyan, et al. An efficient deep neural network with color-weighted loss for fire detection[J]. Multimedia Tools and Applications, 2022, 81(27): 39 695-39 713.
|
[19] |
赵超, 陈肇泉, 王斌, 等. 基于互信息和IGSA优化ELM的重整芳烃收率软测量[J]. 仪器仪表学报, 2019, 40(3):255-263.
|
|
ZHAO Chao, CHEN Zhaoquan, WANG Bin, et al. Soft sensing of reforming aromatics yield based on mutual information and IGSA optimized ELM[J]. Journal of Instrumentation, 2019, 40(3): 255-263.
|
[20] |
夏鹏飞, 尹慧琳, 何艳侠. 基于最大互信息的激光雷达与相机的配准[J]. 仪器仪表学报, 2018, 39(1):34-41.
|
|
XIA Pengfei, YIN Huilin, HE Yanxia. Registration of lidar and camera based on maximum mutual information[J]. Journal of Instrumentation, 2018, 39(1): 34-41.
|