中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 51-58.doi: 10.16265/j.cnki.issn1003-3033.2025.04.1040

• 安全工程技术 • 上一篇    下一篇

页岩气在狭缝中燃爆超压及爆燃转爆轰特性研究

邵昊 副教授1,2(), 蔡毅1,2, 杨涛 教授3,**(), 吴征艳 副教授1,2, 胡焕1,2, 姚志远1,2   

  1. 1 中国矿业大学 安全工程学院,江苏 徐州 221116
    2 中国矿业大学 煤矿瓦斯治理国家工程研究中心,江苏 徐州 221116
    3 华北科技学院 矿山安全学院,河北 廊坊 065201
  • 收稿日期:2024-12-05 修回日期:2025-02-27 出版日期:2025-04-28
  • 通信作者:
    **杨 涛(1983—),男,山东济宁人,博士,教授,主要从事矿井瓦斯灾害防治及控制技术、煤矿动力灾害防治方面的研究。E-mail:
  • 作者简介:

    邵 昊 (1982—)男,山东滨州人,博士,副教授,主要从事气体/粉尘爆炸机制及防治技术、矿井热动力灾害防治技术等方面的研究。E-mail:

  • 基金资助:
    国家重点研发计划项目(2020YFA0711800); 国家自然基金面上项目资助(52274200); 河北省杰出青年基金资助(E2023508019); 中央高校基本科研业务费资助(3142021008)

Study on explosion overpressure and deflagration-to-detonation transition characteristics of shale gas in fractures

SHAO Hao1,2(), CAI Yi1,2, YANG Tao3,**(), WU Zhengyan1,2, HU Huan1,2, YAO Zhiyuan1,2   

  1. 1 School of Safety Science Engineering Management, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
    2 National Engineering Research Center for Coal Mine Gas Control, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
    3 School of Mining Safety, North China Institute of Science and Technology, Langfang Hebei 065201, China
  • Received:2024-12-05 Revised:2025-02-27 Published:2025-04-28

摘要:

为阐明页岩储层甲烷(CH4)原位燃爆在狭缝内爆燃转爆轰(DDT)距离、最大爆炸压力(Pmax) 等传播特性,自主搭建多尺寸可调的三维平板狭缝燃爆试验系统,开展4种水力直径下的甲烷-氧气预混燃爆试验,并结合数值模拟研究高压状态下的页岩气燃爆特性。结果表明:甲烷-氧气预混气体在水力直径1.9~11.43 mm内可以维持燃爆自持传播;Pmax与最大爆炸升压速率均与初始压力成正比,呈现线性增长的关系;在水力直径11.43 mm下甲烷-氧气预混气体Pmax接近理论爆轰压力,随着水力直径的减小,Pmax与初始压力的倍率逐渐降低;初始压力与DDT距离间符合幂函数关系,提升初始压力或降低水力直径,均可缩短DDT距离,从而加快DDT的发生;高压条件下页岩气爆炸特性模拟结果表明,甲烷-氧气预混气体爆炸超压可达到330 MPa,能够对岩石裂隙充分压裂。

关键词: 页岩气, 甲烷(CH4), 狭缝, 燃爆, 爆燃转爆轰(DDT)

Abstract:

To investigate the methane DDT distance and maximum explosion pressure (Pmax) in shale fractures, a multi-scale adjustable 3D planar slit detonation system was developed. Experiments with methane-oxygen premixed gas under 4 different hydraulic diameters, along with numerical simulations, were conducted to examine shale gas combustion under high pressure. Results show that methane-oxygen premixed gas can sustain self-propagating explosion within a hydraulic diameter range of 1.9 to 11.43 mm. Both Pmax and peak pressure rise rate increase linearly with initial pressure. Under a hydraulic diameter of 11.43 mm, Pmax closely approaches theoretical detonation pressure. As the hydraulic diameter decreases, the Pmax-to-initial pressure ratio decreases. The initial pressure and the DDT distance follow a power-law relationship. Increasing the initial pressure or reducing the hydraulic diameter can shorten the DDT distance, thereby accelerating the DDT. The simulation shows that methane-oxygen premixed gas explosions can produce an overpressure of 330 MPa, capable of fully fracturing rock cracks.

Key words: shale gas, methane, fractures, explosion, deflagration-to-detonation transition (DDT)

中图分类号: