中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 43-50.doi: 10.16265/j.cnki.issn1003-3033.2025.04.0958

• 安全工程技术 • 上一篇    下一篇

基于多无人机协同的林火安全探测及人员疏散

耿鹏 副教授1(), 杨豪杰1, 薛芳琳1, 柳艳 副教授2,**()   

  1. 1 南京工程学院 通信与人工智能学院、集成电路学院,江苏 南京 211167
    2 南京工程学院 数理学院,江苏 南京 211167
  • 收稿日期:2024-12-10 修回日期:2025-02-15 出版日期:2025-04-28
  • 通信作者:
    **柳 艳(1980—),女,江苏高邮人,硕士,副教授,主要从事复杂网络方面的研究。E-mail:
  • 作者简介:

    耿 鹏 (1979—),男,湖北钟祥人,硕士,副教授,主要从事复杂系统、智能算法等方面的研究。Email:

  • 基金资助:
    国家自然科学基金资助(61901211); 江苏科技智库计划(青年)项目(JSKX24085)

Forest fire safety detection and personnel evacuation based on collaborative MUAVs

GENG Peng1(), YANG Haojie1, XUE Fanglin1, LIU Yan2,**()   

  1. 1 School of Communication and Artificial Intelligence, School of Integrated Circuits, Nanjing Institute of Technology, Nanjing Jiangsu 211167, China
    2 School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing Jiangsu 211167, China
  • Received:2024-12-10 Revised:2025-02-15 Published:2025-04-28

摘要:

针对当前林火频发背景下无人探测系统缺失及火灾失控后人员疏散效率低的问题,提出一种基于多无人机(MUAVs)协同的林火安全探测方法和避难所选址优化策略。在NetLogo平台上构建多因素耦合的森林火灾动态蔓延模型;改进基于蚁群算法的MUAVs协同搜索机制,该机制通过引入吸引信息素(引导火点聚集区域搜索)与排斥信息素(避免重复路径),优化无人机(UAV)飞行方向转移概率,并建立含避障功能及载水量-速度约束的飞行模型;结合希腊罗德岛地理信息系统(GIS)数据,构建人员疏散动态仿真环境。结果表明:改进蚁群算法在株树密度50%与60%场景下,收敛时间分别较传统算法缩短15%与14%,搜索覆盖率提升35.02%与32.16%;经过对避难所选址进行优化,基于A*算法的疏散策略使整体死亡率降低2.525%。

关键词: 森林火灾, 多无人机(MUAVs), 人员疏散, 火点探测, 改进蚁群算法, A*算法

Abstract:

To address the current challenges of lacking unmanned detection systems amid frequent forest fires and inefficient personnel evacuation during uncontrolled fire scenarios, this article proposes a forest fire safety detection method based on collaborativeMUAVs and an optimized shelter location strategy. A dynamic forest fire spread model coupled with multiple influencing factors is developed on the NetLogo platform. MUAVscollaborative search mechanism, grounded in an improved ant colony algorithm, is enhanced by introducing attractive pheromones (guiding searches toward fire clusters) and repellent pheromones (avoiding redundant paths), thereby optimizing the transfer probability of unmanned aerial vehicle (UAV) flight directions. Additionally, a flight model incorporating obstacle avoidance and water-carrying capacity-speed constraints was established. A dynamic evacuation simulation environment was constructed using geographic information system (GIS) data from Rhodes Island, Greece. Experimental results demonstrate that the improved ant colony algorithm reduces convergence time by 15% and 14% under 50% and 60% tree density scenarios, respectively, while search coverage increases by 35.02% and 32.16%. Furthermore, optimized shelter placement combined with the A* algorithm-based evacuation strategy reduces the overall mortality rate by 2.525%.

Key words: forest fire, multiple unmanned aerial vehicles(MUAVs), personnel evacuation, fire detection, improved ant colony algorithm, A* algorithm

中图分类号: