[1] 靳德武, 刘英锋, 刘再斌, 等. 基于FCM的煤矿突水激光诱导荧光光谱分析[J]. 煤炭科学技术,2013,41(1): 1 573-1 576. JIN Dewu, LIU Yingfeng, LIU Zaibin, et al. Laser induced fluorescence spectrum analysis of water inrush in coal mine based on FCM[J]. Coal Science and Technology, 2013, 41(1): 1 573-1 576. [2] 徐建国, 冯增强. 矿井防治水综合技术[M].徐州:中国矿业大学出版社,2007: 34-39. [3] 李燕, 徐志敏, 刘勇. 矿井突水水源判别方法概述[J]. 煤炭技术,2010,29(11): 87-89. LI Yan, XU Zhimin, LIU Yong. Summary on methods for distinguishing sources of mine water-invasion[J]. Coal Technology, 2010, 29(11): 87-89. [4] 王心义, 徐涛, 黄丹.距离判别法在相似矿区突水水源识别中的应用[J]. 煤炭学报,2011,36(8): 1 354-1 358. WANG Xinyi, XU Tao, HUANG Dan. Application of distance discrimince in identifying water inrush resource in similar coalmine[J]. Journal of China Coal Society, 2011, 36(8): 1 354-1 358. [5] 王心义, 赵伟, 刘小满,等.基于熵权-模糊可变集理论的煤矿井突水水源识别[J].煤炭学报,2017,42(9): 2 433-2 439. WANG Xinyi, ZHAO Wei, LIU Xiaoman, et al. Identification of water inrush source from coalfield based on entropy weight-fuzzy variable set theory [J]. Journal of China Coal Society, 2017, 42(9): 2 433-2 439. [6] 徐星, 郭兵兵, 王公忠. 人工神经网络在矿井多水源识别中的应用[J].中国安全生产科学技术,2016,12(1): 181-185. XU Xing, GUO Bingbing, WANG Gongzhong. Application of artificial neural network for recognition of multiple water sources in mine[J]. Journal of Safety Science and Technology, 2016, 12(1): 181-185. [7] 邵良杉,李印超,徐波. 矿井突水水源识别的RS-LSSVM模型[J].安全与环境学报,2017,17(5): 1 730-1 734. SHAO Liangshan, LI Yinchao, XU Bo. RS-LSSVM model for identifying and determinating the mining water inrush origin[J].Journal of Safety and Environment,2017,17(5): 1 730-1 734. [8] 邵良杉, 李相辰. 基于MIV-PSO-SVM 模型的矿井突水水源识别[J]. 煤炭科学技术,2018,46(8): 183-190. SHAO Liangshan, LI Xiangchen. Identification of mine water inrush source based on MIV-PSO-SVM [J]. Coal Science and Technology, 2018, 46(8): 183-190. [9] 冯琳. 基于EIM和FCE的矿井突水水源判别研究[D]. 太原:太原理工大学,2015. FENG Lin. Study of source discrimination of coalmine water inrush based on EIM and FCE [D]. Taiyuan: Taiyuan University of Technology, 2015. [10] 范君,王新,徐慧.粒子群优化混合核极限学习机的构造煤厚度预测方法[J]. 计算机应用,2018,38(6):1820-1825,1830. FAN Jun,WANG Xin,XU Hui. Prediction method of tectonic coal thickness based on particle swarm optimized hybrid kernel extreme learning machine[J]. Journal of Computer Applications, 2018,38(6):1820-1825,1830. [11] Gaganpreet KAUR, Sankalap ARORA. Chaotic whale optimization algorithm[J]. Journal of Computer Design and Engineering,2018,5(3): 275-284. [12] 王涛,Ryad CHELLALI.非线性权重和收敛因子的鲸鱼算法[J].微电子学与计算机,2019,36(1): 11-15. WANG Tao,Ryad CHELLAI. Whale optimization algorithm with nonlinear weight and convergence factor[J].Microelectronics &Computer,2019,36(1): 11-15. [13] 黄亚飞,王国富,张法全,等.基于蜂群算法和带参阈值函数的图像去噪方法[J].计算机工程与应用,2018,54(17): 164-168. HUANG Yafei, WANG Guofu, ZHANG Faquan, et al. Image denoising method based on bee colony algorithm and parametric threshold function. Computer Engineering andApplications, 2018, 54(17): 164-168. [14] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]. International Conference on Computational Intelligence for Modelling, Control and Automation 2005: 695-701. [15] 毛志勇,黄春娟,路世昌,等.基于KPCA-MPSO-ELM的矿井突水水源判别模型[J].中国安全科学学报,2018,28(8): 111-116. MAO Zhiyong, HUANG Chunjuan, LU Shichang, et al. KPCA-MPSO-ELM based model for discrimination of mine water inrush source [J]. China Safety Science Journal,2018, 28(8): 111-116. [16] 关秋红.新庒孜井田地下水化学特征及突水水源快速判别模型[D].合肥:合肥工业大学,2009. GUAN Qiuhong. Chemical characteristics of groundwater and discriminate models of water bursting source in Xinzhuangzi coalfield of Huainan mining area[D]. Hefei: Hefei University of Technology, 2009. |