[1] |
中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13). http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
|
[2] |
向鹏成, 张子薇, 李卉, 等. 城市地下燃气管道泄漏事故致因因素系统分析[J]. 中国安全科学学报, 2023, 33(12):140-147.
doi: 10.16265/j.cnki.issn1003-3033.2023.12.2162
|
|
XIANG Pengcheng, ZHANG Ziwei, LI Hui, et al. Systematic analysis on causative factors for gas pipeline leakage accidents in urban underground[J]. China Safety Science Journal, 2023, 33(12):140-147.
doi: 10.16265/j.cnki.issn1003-3033.2023.12.2162
|
[3] |
ATTALLAH O, MORISI I. An electronic nose for identifying multiple combustible/harmful gases and their concentration levels via artificial intelligence[J]. Measurement, 2022,199:DOI: 10.1016/j.measurement.2022.111458.
|
[4] |
李龙, 应滨州, 李华曜, 等. 电子鼻多组分气体检测算法与性能研究[J]. 仪表技术与传感器, 2023(11):1-6,11.
|
|
LI Long, YING Binzhou, LI Huayao, et al. Algorithm and performance study of electronic nose for multi-component gas detection[J]. Instrument Technique and Sensor, 2023(11):1-6,11.
|
[5] |
RAHMAN C A, ROGERS S, et al. Tensor-based approach for liquefied natural gas leakage detection from surveillance thermal cameras: a feasibility study in rural areas[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8122-8130.
|
[6] |
WANG Jingfan, JI Jingwei, RAVIKUMAR A P, et al. VideoGasNet: deep learning for natural gas methane leak classification using an infrared camera[J]. Energy, 2022, 238: DOI: 10.1016/j.energy.2021.121516.
|
[7] |
NARKHEDE P, WALAMBE R, MANDAOKAR S, et al. Gas detection and identification using multimodal artificial intelligence based sensor fusion[J]. Applied System Innovation, 2021, 4(1):DOI:10.3390/asi4010003.
|
[8] |
杨余, 杨鑫, 王英, 等. 基于mini-1D-CNN模型的TE过程故障诊断[J]. 中国安全科学学报, 2023, 33(2):173-178.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0017
|
|
YANG Yu, YANG Xin, WANG Ying, et al. Fault diagnosis of TE process based on mini-1D-CNN model[J]. China Safety Science Journal, 2023, 33(2):173-178.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0017
|
[9] |
梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6):1285-1300.
doi: 10.3778/j.issn.1673-9418.2211108
|
|
LIANG Hongtao, LIU Shuo, DU Junwei. et al. A review of the application of deep learning in time series prediction research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6):1285-1300.
|
[10] |
HAN Jin, YANG Yonghao. L-Net: lightweight and fast object detector-based ShuffleNetV2[J]. Journal of Real-time Image Processing, 2021, 18(6): 2527-2538.
|
[11] |
JI Jundong, XU Cheng, ZHANG Xiaodan, et al. Spatio-temporal memory attention for image captioning[J]. IEEE Transactions on Image Processing, 2020, 29: 7615-7628.
|
[12] |
田宝柱, 徐文涛, 梁鹏, 等. 基于多传感器融合的埋地输水管道泄漏声发射定位方法[J]. 科学技术与工程, 2023, 23(24):10307-10 316.
|
|
TIAN Baozhu, XU Wentao, LIANG Peng, et al. Acoustic emission localization method of water pipeline based on multi-sensor fusion[J]. Science Technology and Engineering, 2023, 23(24):10307-10 316.
|
[13] |
王欣, 干镞锐, 许雅玺, 等. 基于字词向量融合的民航智慧监管短文本分类[J]. 中国安全科学学报, 2024, 34(2):37-44.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.0121
|
|
WANG Xin, GAN Zurui, XU Yaxi, et al. Short text classification of civil aviation intelligent supervision based on character-word fusion[J]. China Safety Science Journal, 2024, 34(2):37-44.
doi: 10.16265/j.cnki.issn1003-3033.2024.02.0121
|
[14] |
赵宏, 郭岚, 陈志文, 等. 基于多模态融合与多层注意力的视频内容文本表述研究[J]. 计算机工程, 2022, 48(10):45-54.
doi: 10.19678/j.issn.1000-3428.0063294
|
|
ZHAO Hong, GUO Lan, CHEN Zhiwen, et al. Research on video content text representation based on multimodal fusion and multilayer attention[J]. Computer Engineering, 2022, 48(10):45-54.
doi: 10.19678/j.issn.1000-3428.0063294
|
[15] |
NARKHEDE P, WALAMBE R, CHANDEL P, et al. MultimodalGasData: multimodal dataset for gas detection and classification[J]. Data, 2022, 7(8):DOI:10.3390/data7080112.
|
[16] |
朱馨, 李建微, 郭伟, 等. 基于机器学习的森林火险预测模型[J]. 中国安全科学学报, 2022, 32(9):152-157.
doi: 10.16265/j.cnki.issn1003-3033.2022.09.2729
|
|
ZHU Xin, LI Jianwei, GUO Wei, et al. Forest fire risk prediction model based on machine learning[J]. China Safety Science Journal, 2022, 32(9):152-157.
doi: 10.16265/j.cnki.issn1003-3033.2022.09.2729
|
[17] |
梁秀满, 安金铭, 曹晓华, 等. 基于改进MobileNetV3烧结断面火焰图像识别[J]. 电子测量技术, 2023, 46(14):182-187.
|
|
LIANG Xiuman, AN Jinming, CAO Xiaohua, et al. Flame image recognition of sintering section based on improve MobileNetV3[J]. Electronic Measurement Technology, 2023, 46(14):182-187.
|
[18] |
刘飞, 陈仁文, 邢凯玲, 等. 基于迁移学习与深度残差网络的滚动轴承快速故障诊断算法[J]. 振动与冲击, 2022, 41(3):154-164.
|
|
LIU Fei, CHEN Renwen, XING Kailing, et al. Fast fault diagnosis algorithm for rolling bearing based on transfer learning and deep residual networks[J]. Journal of Vibration and Shock, 2022, 41(3):154-164.
|
[19] |
RAHATE A, MANDAOKAR S, CHANDEL P, et al. Employing multimodal co-learning to evaluate the robustness of sensor fusion for industry 5.0 tasks[J]. Soft Computing, 2023, 27(7): 4139-4155.
|
[20] |
ATTALLAH O. Multitask deep learning-based pipeline for gas leakage detection via E-nose and thermal imaging multimodal fusion[J]. Chemosensors, 2023, 11(7):DOI:10.3390/chemosensors11070364.
|