[1] |
WANG Yi, HE Zhengxiang, WANG Liguang. Truck driver fatigue detection based on video sequences in open-pit mines[J]. Mathematics, Multidisciplinary Digital Publishing Institute, 2021, 9(22): 2908-2922.
|
[2] |
胡剑锋, 王涛涛. 基于脑电信号模糊熵的驾驶疲劳检测分析[J]. 中国安全科学学报, 2018, 28(4): 13-18.
doi: 10.16265/j.cnki.issn1003-3033.2018.04.003
|
|
HU Jianfeng, WANG Taotao. Analysis of driving fatigue detection based on fuzzy entropy of EEG signals[J]. China Safety Science Journal, 2018, 28(4): 13-18.
doi: 10.16265/j.cnki.issn1003-3033.2018.04.003
|
[3] |
ZHANG Pengbo, WANG Xue, CHEN Junfeng, et al. Feature weight driven interactive mutual information modeling for heterogeneous bio-signal fusion to estimate mental workload[J]. Sensors, 2017, 17(10): 2315-2339.
|
[4] |
WANG Fuwang, WANG Hong, FU Rongrong. Real-time ECG-based detection of fatigue driving using sample entropy[J]. Entropy, 2018, 20(3): 196-212.
|
[5] |
程文冬, 付锐, 袁伟, 等. 驾驶人疲劳监测预警技术研究与应用综述[J]. 中国安全科学学报, 2013, 23(1): 155-160.
|
|
CHENG Wendong, FU Rui, YUAN Wei, et al. Overview of researches on driver fatigue monitoring and prewarning technologies and their applications[J]. China Safety Science Journal, 2013, 23(1): 155-160.
|
[6] |
ZHANG Jun, WU Zhongcheng, LI Fang, et al. A deep learning framework for driving behavior identification on in-vehicle can-bus sensor data[J]. Sensors, Multidisciplinary Digital Publishing Institute, 2019, 19(6): 1356-1373.
|
[7] |
辛嵩, 宋明达, 王泽明, 等. 针对特定驾驶员的疲劳驾驶检测方法[J]. 安全与环境学报, 2023, 23(1): 147-152.
|
|
XIN Song, SONG Mingda, WANG Zeming, et al. Fatigue driving detection method for specific drivers[J]. Journal of Safety and Environment, 2023, 23(1): 147-152.
|
[8] |
MAGAN E, SESMERO M P, ALONSOWEBER J M, et al. Driver drowsiness detection by applying deep learning techniques to sequences of images[J]. Applied Sciences, 2022, 12(3): 1145-1170.
|
[9] |
HUANG Rui, WANG Yan, LI Zijian, et al. RF-DCM: multi-granularity deep convolutional model based on feature recalibration and fusion for driver fatigue detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 630-640.
|
[10] |
杨艳艳, 李雷孝, 林浩. 提取驾驶员面部特征的疲劳驾驶检测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1249-1267.
doi: 10.3778/j.issn.1673-9418.2208041
|
|
YANG Yanyan, LI Leixiao, LIN Hao. A review of fatigue driving detection research based on extracting driver's facial features[J]. Computer Science and Exploration, 2023, 17(6): 1249-1267.
|
[11] |
LI Kening, GONG Yunbo, REN Zijiang. A fatigue driving detection algorithm based on facial multi-feature fusion[J]. IEEE Access, 2020, 8(8): 101 244-101 259.
|
[12] |
胡习之, 黄冰瑜. 基于面部特征分析的疲劳驾驶检测方法[J]. 科学技术与工程, 2021, 21(4): 1629-1636.
|
|
HU Xizhi, HUANG Bingyu. Fatigue driving detection system based on face feature analysis[J]. Science Technology and Engineering, 2021, 21 (4): 1629-1636.
|
[13] |
LIU Mingzhou, XU Xin, HU Jing, et al. Real time detection of driver fatigue based on CNN-LSTM[J]. IET Image Processing, 2022, 16(2): 576-595.
doi: 10.1049/ipr2.12373
|
[14] |
方浩杰, 董红召, 林少轩, 等. 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报:工学版, 2023, 57(7): 1287-1296.
|
|
FANG Haojie, DONG Hongzhao, LIN Shaoxuan, et al. Driver fatigue state detection method based on multi-feature fusion[J]. Journal of Zhejiang University:Engineering Science, 2023, 57(7): 1287-1296.
|
[15] |
刘子洋, 徐慧英, 朱信忠, 等. Bi-YOLO:一种基于YOLOv8改进的轻量化目标检测算法[J]. 计算机工程与科学, 2023, 46(8): 1444-1454.
|
|
LIU Ziyang, XU Huiying, ZHU Xinzhong, et al. Bi-YOLO: an improved lightweight object detection algorithm based on YOLOV8[J]. Computer Engineering and Science, 2023, 46(8): 1444-1454.
|