| [1] |
周新民, 金江涛, 鲍娜娜, 等. 基于注意力卷积长短时记忆模型的城市出租车流量预测[J]. 中国安全科学学报, 2024, 34(7):153-162.
doi: 10.16265/j.cnki.issn1003-3033.2024.07.0089
|
|
ZHOU Xinmin, JIN Jiangtao, BAO Nana, et al. Urban taxi traffic flow prediction based on attentive ConvLSTM-ResNet model[J]. China Safety Science Journal, 2024, 34(7):153-162.
doi: 10.16265/j.cnki.issn1003-3033.2024.07.0089
|
| [2] |
胡立伟, 贺雨, 侯智, 等. 山区高速公路交通事故风险多维度耦合研究[J]. 中国安全科学学报, 2024, 34(5):17-27.
doi: 10.16265/j.cnki.issn1003-3033.2024.05.1497
|
|
HU Liwei, HE Yu, HOU Zhi, et al. Multi-dimensional coupling study on traffic accident risk of highway in mountainous areas[J]. China Safety Science Journal, 2024, 34(5):17-27.
doi: 10.16265/j.cnki.issn1003-3033.2024.05.1497
|
| [3] |
ALGHAMDI T, ELGAZZAR K, BAYOUMI M, et al. Forecasting traffic congestion using ARIMA modeling[C]. 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE, 2019: 1227-1232.
|
| [4] |
GUO Jianhua, HUANG Wei, WILLIAMS B M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 50-64.
doi: 10.1016/j.trc.2014.02.006
|
| [5] |
WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281.
doi: 10.1109/TITS.2004.837813
|
| [6] |
LIN Xianfu, HUANG Yuzhang. Short-term high-speed traffic flow prediction based on ARIMA-GARCH-M model[J]. Wireless Personal Communications, 2021, 117(4): 3421-3430.
doi: 10.1007/s11277-021-08085-z
|
| [7] |
CONNOR J T, MARTIN R D, ATLAS L E. Recurrent neural networks and robust time series prediction[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 240-254.
doi: 10.1109/72.279188
pmid: 18267794
|
| [8] |
ZHANG Rongji, SUN Feng, SONG Ziwen, et al. Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021(1): DOI: 10.1155/2021/1338607.
|
| [9] |
|
| [10] |
YE Xiaofei, HAO Yu, YE Qiming, et al. Demand forecasting of online car‐hailing by exhaustively capturing the temporal dependency with TCN and attention approaches[J]. IET Intelligent Transport Systems, 2024, 18(12): 2565-2575.
doi: 10.1049/itr2.v18.12
|
| [11] |
吴莹莹, 赵丽宁, 袁志鑫, 等. 基于注意力机制的CNN-GRU船舶交通流预测模型[J]. 大连海事大学学报, 2023, 49(1):75-84.
|
|
WU Yingying, ZHAO Lining, YUAN Zhixin, et al. CNN-GRU ship traffic flow prediction model based on attention mechanism[J]. Journal of Dalian Maritime University, 2023, 49(1): 75-84.
|
| [12] |
YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[J]. arXiv, 2017:DOI: 10.24963/ijcai.2018/505.
|
| [13] |
BAI Lei, YAO Lina, LI Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[J]. Advances in Neural Information Processing Systems, 2020, 33: 17804-17815.
|
| [14] |
FANG Zheng, LONG Qingqing, SONG Guojie, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 364-373.
|
| [15] |
JI Jiahao, WANG Jingyuan, HUANG Chao, et al. Spatio-temporal self-supervised learning for traffic flow prediction[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 4356-4364.
|
| [16] |
YAO Huaxiu, TANG Xianfeng, WEI Hua, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 5668-5675.
|
| [17] |
ZHANG Junbo, ZHENG Yu, QI Dekang. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 1655-1661.
|