[1] |
张凯, 张科, 李昆. 主元分析-神经网络岩爆等级预测模型[J]. 中国安全科学学报, 2021, 31(3):96-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.014
|
|
ZHANG Kai, ZHANG Ke, LI Kun. Prediction model of rockburst grade based on PCA-neural network[J]. China Safety Science Journal, 2021, 31(3):96-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.014
|
[2] |
ZHANG Junfei, WANG Yuhang, SUN Yuantian, et al. Strength of ensemble learning in multiclass classification of rockburst intensity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(13):1833-1853.
doi: 10.1002/nag.3111
|
[3] |
黄建, 夏元友, 吝曼卿. 基于改进组合赋权的岩爆多维云模型预测研究[J]. 中国安全科学学报, 2019, 29(7):26-32.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.005
|
|
HUANG Jian, XIA Yuanyou, LIN Manqing. Study on prediction of rock burst by multi-dimensional cloud model based on improved combined weight[J]. China Safety Science Journal, 2019, 29 (7):26-32.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.005
|
[4] |
陈海军, 郦能惠, 聂德新, 等. 岩爆预测的人工神经网络模型[J]. 岩土工程学报, 2002, 24(2):229-232.
|
|
CHEN Haijun, LI Nenghui, NIE Dexin, et al. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2):229-232.
|
[5] |
贾义鹏, 吕庆, 尚岳全. 基于粒子群算法和广义回归神经网络的岩爆预测[J]. 岩石力学与工程学报, 2013, 32(2):343-348.
|
|
JIA Yipeng, LYU Qing, SHANG Yuequan. Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (2):343-348.
|
[6] |
吴顺川, 张晨曦, 成子桥. 基于PCA-PNN原理的岩爆烈度分级预测方法[J]. 煤炭学报, 2019, 44(9):2767-2776.
|
|
WU Shunchuan, ZHANG Chenxi, CHENG Ziqiao. Prediction method of rockburst intensity classification based on PCA-PNN principle[J]. Journal of China Coal Society, 2019, 44 (9):2767-2776.
|
[7] |
LI Tianzheng, LI Yongxin, YANG Xiaoli. Rock burst prediction based on genetic algorithms and extreme learning machine[J]. Journal of Central South University, 2017, 24(9):2105-2113.
doi: 10.1007/s11771-017-3619-1
|
[8] |
GHASEMI E, GHOLIZADEH H, AMOUSSOU C A. Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach[J]. Engineering with Computers:An International Journal for Simulation-Based Engineering, 2020, 36(S1):213-225.
|
[9] |
谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报, 2021, 40(6): 1186-1194.
|
|
TAN Wenkan, YE Yicheng, HU Nanyan, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1186-1194.
|
[10] |
邵良杉, 周玉. 基于MIV-MA-KELM模型的岩爆烈度等级预测[J]. 中国安全科学学报, 2018, 28(2):34-39.
doi: 10.16265/j.cnki.issn1003-3033.2018.02.006
|
|
SHAO Liangshan, ZHOU Yu. MIV-MA-KELM model based prediction of rockburst intensity grade[J]. China Safety Science Journal, 2018, 28 (2):34-39.
doi: 10.16265/j.cnki.issn1003-3033.2018.02.006
|
[11] |
田睿. 基于机器学习的岩爆烈度等级预测模型研究与应用[D]. 包头: 内蒙古科技大学, 2020.
|
|
TIAN Rui. Research and application of rockburst intensity classification prediction model based on machine learning algorithms[D]. Baotou: Inner Mongolia University of Science and Technology, 2020.
|
[12] |
董明刚, 姜振龙, 敬超. 基于海林格距离和SMOTE的多类不平衡学习算法[J]. 计算机科学, 2020, 47(1):102-109.
doi: 10.11896/jsjkx.190600060
|
|
DONG Minggang, JIANG Zhenlong, JING Chao. Multi-class imbalanced learning algorithm based on hellinger distance and SMOTE Algorithm[J]. Computer Science, 2020, 47 (1):102-109.
doi: 10.11896/jsjkx.190600060
|
[13] |
KUMARI A, THAKAR U. Hellinger distance based oversampling method to solve multi-class imbalance problem[C]. 2017 7thInternational Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2017:137-141.
|
[14] |
SEDAK M, ROSIĆ B. Multi-objective optimization of planetary gearbox with adaptive hybrid particle swarm differential evolution algorithm[J]. Applied Sciences,2021:DOI: 10.3390/app11031107.
doi: 10.3390/app11031107
|