[1] |
杨杰. 基于人体-服装-环境的高温人体热反应模拟与实验研究[D]. 北京: 清华大学, 2016.
|
|
YANG Jie. Numerical and experimental study on physiological responses in hot environments based on human-clothing-environment system[D]. Beijing: Tsinghua University, 2016.
|
[2] |
苏云, 杨杰, 李睿, 等. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(2):147-152.
|
|
SU Yun, YANG Jie, LI Rui, et al. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation[J]. Journal of Textile Research, 2019, 40(2):147-152.
doi: 10.1177/004051757004000208
|
[3] |
刘纪坤, 黄一鸣, 张逸文, 等. 防护服对消防员工效性能影响的定量研究[J]. 中国安全生产科学技术, 2022, 18(5):109-114.
|
|
LIU Jikun, HUANG Yiming, ZHANG Yiwen, et al. Quantitative research on influence of personal protective clothing on ergonomic performance of firefighters[J]. Journal of Safety Science and Technology, 2022, 18(5):109-114.
|
[4] |
翟胜男, 王鸿博, 柯莹. 火灾环境中消防服防护性能测评研究进展[J]. 丝绸, 2020, 57(11):46-50.
|
|
ZHAI Shengnan, WANG Hongbo, KE Ying. Research progress of evaluation of protection performance of fire-fighting clothing in fire environment[J]. Journal of Silk, 2020, 57(11):46-50.
|
[5] |
鲁义, 刘艺伦, 施式亮, 等. 用于消防服的无机相变材料改进试验研究[J]. 中国安全科学学报, 2020, 30(8):171-176.
doi: 10.16265/j.cnki.issn1003-3033.2020.08.025
|
|
LU Yi, LIU Yilun, SHI Shiliang, et al. Improvement experiments on inorganic phase change material for fire-fighting clothing[J]. China Safety Science Journal, 2020, 30(8):171-176.
doi: 10.16265/j.cnki.issn1003-3033.2020.08.025
|
[6] |
朱雯, 苏云, 陈若颖, 等. 相变微胶囊涂层织物在灭火防护服中的应用[J]. 中国安全科学学报, 2020, 30(12):180-185.
doi: 10.16265/j.cnki.issn 1003-3033.2020.12.025
|
|
ZHU Wen, SU Yun, CHEN Ruoying, et al. Application of fabric coated with phase change microcapsulein thermal protective clothing[J]. China Safety Science Journal, 2020, 30(12):180-185.
doi: 10.16265/j.cnki.issn 1003-3033.2020.12.025
|
[7] |
MQAQNDAL S, ANNAHEIM S, CAPT A, et al. A categorization tool for fabric systems used in firefighters' clothing based on their thermal protective and thermo-physiological comfort performances[J]. Textile Research Journal, 2018, 89(16):3244-3259.
doi: 10.1177/0040517518809055
|
[8] |
徐畅, 申世飞, 付明, 等. 灾害环境中防护服性能测评研究进展[J]. 中国安全科学学报, 2017, 27(5):140-145.
doi: 10.16265/j.cnki.issn1003-3033.2017.05.025
|
|
XU Chang, SHEN Shifei, FU Ming, et al. Progress in research on test and evaluation of protective clothing performance in disaster environment[J]. China Safety Science Journal, 2017, 27(5):140-145.
doi: 10.16265/j.cnki.issn1003-3033.2017.05.025
|
[9] |
TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
doi: 10.1023/A:1015484426361
|
[10] |
MANDAL S, GUO Wensong. An empirical analysis of thermal protective performance of fabrics used in protective clothing[J]. The Annals of Occupational Hygiene, 2014, 58(8):1065-1077.
|
[11] |
MANDAL S, MAZUMDER N, AGNEW R, et al. Characterization and modeling of thermal protective and thermo-physiological comfort performance of polymeric textile materials:a review[J]. Materials, 2021, 14(9):DOI: 10.3390/ma14092397.
doi: 10.3390/ma14092397.
|
[12] |
HE Jiazhen, CHEN Yan, WANG Lichuan, et al. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure[J]. Textile Research Journal, 2018, 88(24):2867-2879.
doi: 10.1177/0040517517732084
|
[13] |
彭鹏. 一类反常热传递模型及参数决定反问题[D]. 杭州: 浙江理工大学, 2020.
|
|
PENG Peng. A class of abnormal heat transfer models and related inverse problems of parameters determination[D]. Hangzhou: Zhejiang Sci-Tech University, 2020.
|
[14] |
DABROWSKA A K. Artificial neural networks for prediction of local thermal insulation of clothing protecting against cold[J]. International Journal of Clothing Science and Technology, 2018, 30(1):82-100.
doi: 10.1108/IJCST-08-2016-0098
|
[15] |
王丽燕, 李庆杰, 李雁宙, 等. 基于蒙特卡罗算法的高温作业防护服优化设计[J]. 大连理工大学学报, 2020, 60(2):216-220.
|
|
WANG Liyan, LI Qingjie, LI Yanzhou, et al. Optimal design of protective clothing for high-temperature operation based on Monte Carlo algorithm[J]. Journal of Dalian University of Technology, 2020, 60(2):216-220.
|
[16] |
张姗姗, 陈鹏, 陶雪莲, 等. 基于量子遗传算法对高温防护服最优厚度的研究[J]. 黑龙江大学自然科学学报, 2020, 37(1):45-51.
|
|
ZHANG Shanshan, CHEN Peng, TAO Xuelian, et al. Research on optimal thickness of elevated temperature workwear based on quantum genetic algorithm[J]. Journal of Natural Sciences of Heilongjiang University, 2020, 37(1): 45-51.
|
[17] |
董亚玲, 雷亿辉, 刘倩岚. 遍历算法在热防护服设计中的应用[J]. 科技视界, 2022(18):18-20.
|
|
DONG Yaling, LEI Yihui, LIU Qianlan. Application of traversal algorithm in thermal protective clothing design[J]. Science & Technology Horizons, 2022(18):18-20.
|
[18] |
谷韬, 徐定华. 带随机Robin边界数据的三层热传递模型及参数识别反问题[J]. 浙江理工大学学报:自然科学版, 2021, 45(2):266-272.
|
|
GU Tao, XU Dinghua. Three-layer heat transfer model with random Robin boundary data and the inverse problem of parameter identification[J]. Journal of Zhejiang Sci-Tech University: Natural Science Edition, 2021, 45(2):266-272.
|
[19] |
WIEMANN P F V, KLEIN N, KNEIB T. Correcting for sample selection bias in Bayesian distributional regression models[J]. Computational Statistics & Data Analysis, 2022, 168: DOI: 10.1016/J.CSDA.2021.107382.
doi: 10.1016/J.CSDA.2021.107382
|
[20] |
WANG Ning, MAREK R, YAO Wen, et al. Fuzzy linear regression based on approximate Bayesian computation[J]. Applied Soft Computing, 2020, 97: DOI: 10.1016/j.asoc.2020.106763.
doi: 10.1016/j.asoc.2020.106763
|
[21] |
吴迪. 基于线性回归模型的贝叶斯方法的应用[D]. 长春: 长春理工大学, 2020.
|
|
WU Di. Application of Bayesian method based on linear regression model[D]. Changchun: Changchun University of Science and Technology, 2020.
|
[22] |
TORVI D A, ENG P, THRELFALL T G. Heat transfer model of flame-resistant fabrics during cooling after exposure to fire[J]. Fire Technology, 2005, 42(1):27-48.
doi: 10.1007/s10694-005-3733-8
|
[23] |
BU Chao, ZHANG Zengping. Research on curve fitting and overfitting based on Bayesian method[C]. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), 2021:141-144.
|
[24] |
HASHIMOTO S, SUGASAWA S. Robust Bayesian regression with synthetic posterior distributions[J]. Entropy, 2020, 22(6):DOI: 10.3390/e22060661.
doi: 10.3390/e22060661
|