中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (1): 60-66.doi: 10.16265/j.cnki.issn1003-3033.2025.01.0147

• 安全工程技术 • 上一篇    下一篇

基于改进YOLOv8的矿卡司机疲劳驾驶检测

顾清华1,2(), 殷书檀1,2, 王丹1,2, 李学现1,2, 尹慧民3   

  1. 1 西安建筑科技大学 资源工程学院,陕西 西安 710055
    2 西安市智慧工业感知、计算与决策重点实验室,陕西 西安 710055
    3 哈密市和翔工贸有限责任公司,新疆 哈密 839200
  • 收稿日期:2024-08-13 修回日期:2024-10-22 出版日期:2025-01-28
  • 作者简介:

    顾清华 (1981—),男,山东诸城人,博士,教授,博士生导师,主要从事矿业系统工程方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金资助(52374135); 金属矿智能开采理论及技术创新团队项目(2023-CX-TD-12)

Mining truck driver fatigue driving detection based on improved YOLOv8

GU Qinghua1,2(), YIN Shutan1,2, WANG Dan1,2, LI Xuexian1,2, YIN Huimin3   

  1. 1 School of Resource Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China
    2 Key Laboratory of Perception, Computing and Decision Making for Intelligent Industry, Xi'an Shaanxi 710055, China
    3 Hami Hexiang Industry and Trade Co., Ltd., Hami Xinjiang 839200, China
  • Received:2024-08-13 Revised:2024-10-22 Published:2025-01-28

摘要:

为解决露天矿区卡车司机疲劳驾驶检测漏检率和误检率高、鲁棒性较差的问题,构建基于改进YOLOv8的露天矿卡车司机疲劳驾驶检测模型(EBS-YOLO),提高疲劳检测的整体性能。首先,以YOLOv8为疲劳检测基础模型,通过添加小目标检测层,增强模型对小目标关注;其次,引入瓶颈注意力(BAM)模块,强化模型对小目标特征提取能力,尤其是对眼部特征提取能力;最后,将主干网络中跨阶段聚合模块(C2f)全部替换为高效多尺度注意力(EMA)模块,进而有效降低模型参数量和计算开销,以满足模型轻量化需求。结果表明: 改进后的YOLOv8模型检测效果较好,准确率、召回率、平均检测精度分别达到了93.6%、93.9%、96.5%,且模型内存大小仅有4.9 MB。相比于YOLOv8模型,改进后的模型能够快速准确识别出矿卡司机疲劳状态,满足实时性要求,从而有效预防疲劳驾驶事故发生。

关键词: 露天矿, 疲劳驾驶检测, 卡车司机, 小目标检测, YOLOv8

Abstract:

To address the high rates of missed detections and false alarms, as well as the poor robustness in fatigue driving detection for open-pit mine truck drivers, a fatigue driving detection model for mine truck drivers (EBS-YOLO) based on the improved YOLOv8 is constructed to enhance the overall performance of fatigue detection. Firstly, YOLOv8 was used as the basic model for fatigue detection, and a small target detection layer was added to enhance the model's attention to small targets. Secondly, the bottleneck attention module (BAM) was used to improve the model performance to extract small target features, especially eye features. Finally, all cross-stage aggregation modules (C2f) in the backbone network were replaced with efficient multi-scale attention (EMA) modules, thereby effectively reducing model parameters and computational overhead to meet the requirements of a lightweight model. The results showed that the improved YOLOv8 model had a great detection effect with the accuracy, recall rate, and average detection accuracy reaching 93.6%, 93.9%, and 96.5%, respectively, and the memory size of the model was only 4.9 MB. Compared with the YOLOv8 model, the improved model can quickly and accurately identify the fatigue state of mining truck drivers, meet real-time requirements, and effectively prevent fatigue-driving accidents.

Key words: open-pit mines, fatigue driving detection, truck driver, detection of small targets, YOLOv8

中图分类号: