中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 28-35.doi: 10.16265/j.cnki.issn1003-3033.2025.03.0749

• 安全社会科学与安全管理 • 上一篇    下一篇

基于计算机视觉的人员疲劳状态与不安全行为识别

李华(), 吴立舟, 钟兴润, 郭粮玮, 崔煜馨   

  1. 西安建筑科技大学 资源工程学院,陕西 西安 710055
  • 收稿日期:2024-09-20 修回日期:2024-11-23 出版日期:2025-03-28
  • 作者简介:

    李 华 (1979—),女,陕西西安人,博士,副教授,硕士生导师,主要从事企业风险评估与安全管理、建筑安全监测与监控、公共安全与应急管理等方面的研究。E-mail:

    钟兴润,讲师

  • 基金资助:
    西安建筑科技大学创新创业训练计划项目(X202410703391)

Recognition of personnel fatigue state and unsafe behavior based on computer vision

LI Hua(), WU Lizhou, ZHONG Xingrun, GUO Liangwei, CUI Yuxin   

  1. School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China
  • Received:2024-09-20 Revised:2024-11-23 Published:2025-03-28

摘要:

以提高塔吊操作的安全性和效率为案例,提出一种综合识别疲劳状态和不安全行为的方法,以实时发现驾驶员可能存在的安全隐患。通过摄像头捕获实时视频流,并对视频进行分析和预处理,提取关键信息,用于识别后续的疲劳和不安全行为;在疲劳状态识别方面,采用基于眼睛和嘴部状态的分析方法,重点监测眼睛开闭状态、眨眼频率及哈欠次数等生理指标;在不安全行为识别方面,结合计算机视觉与深度学习技术,实时检测驾驶员的潜在危险操作,从而确保及时发现安全风险。结果表明:经过优化后的YOLOv5-高效通道关注(ECA)模型在疲劳状态和不安全行为识别中性能得到显著提升;模型在测试集上的精确率和召回率均超过90%,展现出良好的识别能力。

关键词: 计算机视觉, 疲劳状态, 不安全行为状态, 塔吊驾驶员, YOLOv5

Abstract:

Taking improving the safety and efficiency of tower crane operation as an example, a method of integrated identification of fatigue state and unsafe behavior was proposed in order to detect the potential safety hazards of drivers in real time. A live video stream was captured via a camera, and the video was analyzed and pre-processed to extract critical information for identifying subsequent fatigue and unsafe behavior. In terms of fatigue state recognition, the analysis method based on the state of eyes and mouth was used to monitor the physiological indicators such as the state of eyes opening and closing, the blink frequency and yawn frequency. In terms of unsafe behavior identification, computer vision and deep learning technology were combined to detect the potential dangerous operations of drivers in real time, thus ensuring timely detection of safety risks. The results show that the performance of the optimized YOLOv5-ECA(Efficient Channel Attention) model is significantly improved in fatigue state and unsafe behavior recognition. The accuracy rate and recall rate of the model on the test set are more than 90%, showing good recognition ability.

Key words: computer vision, fatigue state, unsafe behavior detection, tower crane driver, YOLOv5

中图分类号: