中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 52-59.doi: 10.16265/j.cnki.issn1003-3033.2025.03.0471

• 安全社会科学与安全管理 • 上一篇    下一篇

基于改进YOLOv5的机械制造业企业安全风险管理模型

张浩1(), 艾尔肯·亥木都拉2,**()   

  1. 1 新疆大学 商学院,新疆 乌鲁木齐 830046
    2 新疆大学 智能制造现代产业学院,新疆 乌鲁木齐 830046
  • 收稿日期:2024-10-16 修回日期:2024-12-23 出版日期:2025-03-28
  • 通信作者:
    ** 艾尔肯·亥木都拉(1974—),男,新疆乌鲁木齐人,维吾尔族,硕士,副教授,主要从事同微电子、计算机、信息、网络等新兴技术领域交叉等方面的研究。E-mail:
  • 作者简介:

    张 浩 (2000—),男,安徽合肥人,硕士研究生,主要研究方向为机械制造业企业生产安全风险管理。E-mail:

Enterprise safety risk management model of machinery manufacturing industry based on improved YOLOv5

ZHANG Hao1(), HAIMUDULA Aierken2,**()   

  1. 1 Business School, Xinjiang University, Urumqi Xinjiang 830046, China
    2 School of Intelligent Manufacturing Modern Industry, Xinjiang University, Urumqi Xinjiang 830046, China
  • Received:2024-10-16 Revised:2024-12-23 Published:2025-03-28

摘要:

为提升机械制造业企业安全风险管理的效率与精确性,融合贝叶斯网络与机器视觉技术,基于改进的 YOLOv5计算作业现场安全隐患事件交并比(IoU)值,利用审计风险评估结合层次分析法(AHP)得出危险权重确定贝叶斯网络根节点的先验概率,建立贝叶斯网络模型与设计管理体系,实现闭环控制,构建一种机械制造业企业安全风险管理模型,并经实例验证。结果表明:该模型有着较为准确的识别与评估能力,能够发现一些潜在的安全隐患,据此可对现行的管理流程作适当优化。同时,该模型还能够实现定性与定量分析的有效结合,把专家经验和数据量化成果相互融合、彼此印证,使得风险评估结果在科学性与可靠性方面有一定提升,可为安全风险管理工作提供一个实用的新思路。

关键词: 机械制造业企业, 安全风险管理, 贝叶斯网络, 机器视觉, 改进YOLOv5, 层次分析法(AHP), 先验概率

Abstract:

In order to improve the efficiency and accuracy of safety risk management in machinery manufacturing enterprises, the Bayesian network and machine vision technology were combined. Based on improved YOLOv5, Intersection over Union(IoU) values of safety hazard events occurring at the operation site were calculated. By leveraging the audit risk assessment in conjunction with AHP to derive the danger weights, the prior probabilities of the root nodes of Bayesian network were determined. Bayesian network model and design management system were established to realize closed-loop control. A safety risk management model of machinery manufacturing enterprises was constructed and verified by examples. The results show that the model has a more accurate identification and evaluation ability, and can find some potential safety hazards, so as to optimize the current management process. At the same time, the model also successfully realizes the effective combination of qualitative and quantitative analysis, integrates the expert experience and data quantification results, and confirms each other, so that the risk assessment results have a certain improvement in scientificity and reliability, which can provide a practical new idea for safety risk management.

Key words: machinery manufacturing industry, safety risk management, Bayesian network, machine vision, improved YOLOv5, analytic hierarchy process (AHP), prior probability

中图分类号: