中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (7): 20-27.doi: 10.16265/j.cnki.issn1003-3033.2024.07.0229

• 安全社会科学与安全管理 • 上一篇    下一篇

融合强化学习的DBN跑道侵入风险预测

吴维1(), 吴泽萱2, 王兴隆1, 祝龙飞2   

  1. 1 中国民航大学 民航飞联网重点实验室,天津 300300
    2 中国民航大学 空中交通管理学院,天津 300300
  • 收稿日期:2024-01-19 修回日期:2024-04-20 出版日期:2024-07-28
  • 作者简介:

    吴 维 (1982—),男,河北承德人,硕士,讲师,主要从事空中交通系统优化与管理方面的研究。E-mail:

    王兴隆 教授

  • 基金资助:
    中央高校基本科研业务费项目中国民航大学专项(3122025098)

Research on DBN incorporating reinforcement learning for runway intrusion risk prediction

WU Wei1(), WU Zexuan2, WANG Xinglong1, ZHU Longfei2   

  1. 1 Key Laboratory of Internet of Aircraft, Civil Aviation University of China, Tianjin 300300, China
    2 College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
  • Received:2024-01-19 Revised:2024-04-20 Published:2024-07-28

摘要:

为解决机场跑道侵入事件风险量化难度大、时效性差、精准性低等问题,提升跑道侵入风险预警能力,构建融合强化学习的动态贝叶斯网络(DBN)风险预测模型。首先,结合因果推断理论与灰色关联分析法分析跑道侵入历史事件,识别跑道侵入事件风险致因;其次,运用贝叶斯网络(BN)理论挖掘各风险因素间的关联性,并利用皮尔逊线性相关系数量化各因素间的关联关系,构建表征风险传播的致因关系网络;然后,利用三角模糊方法与隐马尔可夫模型(HMMs)优化DBN参数学习机制;最后,利用历史数据验证基于融合强化学习的DBN预测结果准确性。结果表明:基于融合强化学习的DBN预测结果与历史数据统计数值的拟合较好,准确率为84 %,与单独DBN预测结果相比准确性提升10 %;相比于采用度值评价法,通过互信息识别关键节点可有效提升预测准确率和区分度。

关键词: 强化学习, 动态贝叶斯网络(DBN), 跑道侵入, 风险预测, 灰色关联分析

Abstract:

In order to solve the problems of difficulty in quantifying the risk of airport runway incursion events, poor timeliness and low accuracy, and to enhance the capability of predicting runway incursion risks, a DBN model incorporating reinforcement learning for risk prediction was constructed. Firstly, causal inference theory was combined with grey relational analysis to analyze historical runway incursion events and identify the underlying risk factors. Secondly, Bayesian network(BN) theory was applied to explore the correlations among these factors and quantify these correlations using the Pearson linear correlation coefficient. This process helped in constructing a causation correlations network that effectively represented the propagation of risks associated with runway incursions. Then, the triangular fuzzy method and Hidden Markov Models (HMMs) were utilized to further refine and optimize the DBN parameter learning mechanism. Finally, the model's accuracy was validated using historical data. The results demonstrate that the proposed model's predictions of runway incursion risks closely align with the statistical values of historical data, achieving an accuracy rate of 84%, which represents a significant 10% improvement over Bayesian network predictions. Additionally, the use of mutual information to identify key nodes is found to effectively improve accuracy and discrimination compared to the degree value evaluation method.

Key words: reinforcement learning, dynamic Bayesian network (DBN), runway incursion, risk prediction, grey correlation analysis

中图分类号: