中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (8): 54-60.doi: 10.16265/j.cnki.issn1003-3033.2025.08.1054

• 安全社会科学与安全管理 • 上一篇    下一篇

炼化企业工艺安全管理指标数据预测方法

刘洋1,2,3()   

  1. 1 化学品安全全国重点实验室, 山东 青岛 266104
    2 中石化安全工程研究院有限公司, 山东 青岛 266104
    3 中石化管理体系认证(青岛)有限公司, 山东 青岛 266104
  • 收稿日期:2025-03-13 修回日期:2025-05-18 出版日期:2025-08-28
  • 作者简介:

    刘 洋 (1995—),男,山东烟台人,硕士,工程师,主要从事化工安全智能化技术方面的工作。E-mail:

  • 基金资助:
    中国工程院重点战略咨询项目(2023-XZ-17)

Prediction method for process safety management indicator data of refining and chemical enterprises

LIU Yang1,2,3()   

  1. 1 State Key Laboratory of Chemical Safety, Qingdao Shandong 266104, China
    2 SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao Shandong 266104, China
    3 SINOPEC Management System Certification (Qingdao) Co., Ltd., Qingdao Shandong 266104, China
  • Received:2025-03-13 Revised:2025-05-18 Published:2025-08-28

摘要: 为提升炼化企业过程安全管理水平,增强对关键安全指标的动态监控与趋势预警能力,提出一种融合多预测模型的工艺报警数据预测方法。该方法结合差分移动平均自回归(ARIMA)、二次指数平滑以及基于粒子群优化(PSO)的支持向量回归(SVR)3种时间序列预测模型,针对不同指标的趋势性、自相关性与非线性特征,实现对多样化安全指标的有效建模与预测。首先,处理原始指标数据的异常值;分别构建3类预测模型并计算预测结果;然后,通过比较各模型误差自动选取最优模型用于指标趋势预测;最后,实证分析某炼化企业一年内的时平均报警数指标。结果表明:该方法能够动态适配不同数据特征,所选模型预测误差稳定低于0.1,明显优于现有报警数量级精度要求。该方法可有效提升炼化企业过程安全指标预测的准确性与灵活性,及时识别潜在风险指标。

关键词: 炼化企业, 工艺安全, 安全管理, 指标数据, 时间序列, 支持向量回归(SVR), 指数平滑法

Abstract:

To improve the level of process safety management in refining and chemical enterprises and enhance dynamic monitoring and trend warning capabilities for key safety indicators, a multi-model fusion method for process alarm data prediction was proposed. This approach integrated three time series forecasting models: Autoregressive Integrated Moving Average (ARIMA), double exponential smoothing, and particle swarm optimization(PSO)-based support vector regression (SVR). The method effectively modeled and predicted diverse safety indicators by addressing their trend, autocorrelation, and nonlinear characteristics. Initially, outliers in the raw indicator data were processed. Three types of forecasting models were then constructed and their prediction results were computed. The optimal model for trend prediction was automatically selected based on error comparison. Finally, an empirical analysis was conducted using the time-averaged alarm count indicators from a refinery enterprise over one year. The results show that the proposed method dynamically adapts to varying data characteristics, with selected model prediction errors consistently remaining below 0.1, significantly outperforming the existing requirements for alarm magnitude accuracy. This method effectively enhances the accuracy and flexibility of safety indicator prediction in refining and chemical enterprises and enables the timely identification of potential risk indicators.

Key words: refining and chemical enterprises, process safety, safety management, indicator data, time series, support vector regression (SVR), exponential smoothing method

中图分类号: