中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (8): 48-53.doi: 10.16265/j.cnki.issn1003-3033.2025.08.0164

• 安全社会科学与安全管理 • 上一篇    下一篇

基于SIF与社会网络的化工火灾事故致因分析

王佩1(), 李小婷2, 杨睿2, 郑丽娜2,**()   

  1. 1 首都经济贸易大学 管理工程学院, 北京 100070
    2 中国矿业大学 安全工程学院, 江苏 徐州 221116
  • 收稿日期:2025-03-24 修回日期:2025-06-29 出版日期:2025-08-28
  • 通信作者:
    **郑丽娜(1986—),女,山东德州人,博士,教授,博士生导师,主要从事工作场所粉尘暴露监测、气溶胶采样技术、气溶胶化学组分在线监测技术和仪器研发、微等离子体光谱和拉曼光谱定量分析技术方面的研究。E-mail:
  • 作者简介:

    王 佩 (1987—),女,湖北武汉人,博士,讲师,主要从事职业卫生、粉尘治理和人因工效学方面的研究。E-mail:

  • 基金资助:
    北京市教育委员会科研计划项目(KM202310038002)

Analysis of causes of chemical fire accidents based on SIF and social network

WANG Pei1(), LI Xiaoting2, YANG Rui2, ZHENG Lina2,**()   

  1. 1 School of Management Engineering, Capital University of Economics and Business, Beijing 100070, China
    2 School of Safety Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
  • Received:2025-03-24 Revised:2025-06-29 Published:2025-08-28

摘要: 为有效识别和防控化工火灾事故风险,遏制化工火灾事故频发,基于数字化技术的深度案例分析,提出一种融合文本挖掘、安全信息流(SIF)模型层次分析与社会网络分析的多维度综合研究框架。首先,对2000—2024年75起化工火灾事故调查报告进行词频-逆文档频率(TF-IDF)关键词提取与潜在狄利克雷分配(LDA)主题建模;然后,基于SIF模型,将提取出的致因按微观、中观和宏观层次进行分类;最后,借助社会网络分析方法构建事故致因网络,通过频数统计、中心性分析及关键关系挖掘,识别出事故致因网络中的核心节点和关键影响路径。结果表明:微观致因占比为56.3%,是导致化工火灾事故的最关键致因因素,其中,个体因素和环境设备风险在化工火灾事故中占据主导地位;中观致因中“安全监督不充分”度数中心度最高,组织管理不到位→安全监督不充分→个人准备不足→违反规章制度是化工火灾关键致因路径。

关键词: 安全信息流(SIF)模型, 社会网络, 化工火灾, 事故致因, 安全管理

Abstract:

To effectively identify and prevent the risks of chemical fire accidents, a comprehensive research framework was proposed, integrating text mining, SIF model hierarchical analysis, and social network analysis based on rich accident investigation reports in the era of big data. Firstly, the key causes of the accidents were systematically extracted through text preprocessing, term frequency-inverse document frequency (TF-IDF) keyword extraction, and latent dirichlet allocation (LDA) topic modeling, combined with 75 representative chemical fire accident investigation reports from 2000 to 2024. Then, based on the SIF model, the extracted causes were classified into the micro, meso, and macro levels. Subsequently, the accident cause network was constructed using social network analysis methods. Core nodes and key influence paths in the accident cause network were identified through frequency statistics, centrality analysis, and key relationship mining. The research results show that the micro-causes accounted for 56.3%, representing the most crucial factors contributing to chemical fire accidents, with individual factors and environmental equipment risks being dominant. At the meso level, insufficient safety supervision has the highest degree centrality. The key cause path for chemical fire accidents is: inadequate organizational management → insufficient safety supervision → insufficient personal preparation → violation of regulations.

Key words: safety information flow(SIF) model, social network, chemical fire, accident causes, safey management

中图分类号: