中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 151-158.doi: 10.16265/j.cnki.issn1003-3033.2025.03.0757

• 安全工程技术 • 上一篇    下一篇

基于24Model的动火作业事故致因文本挖掘

牛茂辉1(), 李威君1,**(), 刘音1, 王璐2   

  1. 1 山东科技大学 安全与环境工程学院,山东 青岛 266590
    2 山东省港口集团有限公司,山东 青岛 266000
  • 收稿日期:2024-10-19 修回日期:2024-12-21 出版日期:2025-03-28
  • 通信作者:
    ** 李威君(1988—),女,山东烟台人,博士,副教授,主要从事油气生产过程的风险评估与预警、事故预防与风险控制理论、应急管理与过程评价等方面的研究。E-mail:
  • 作者简介:

    牛茂辉 (1999—),男,河南濮阳人,硕士研究生,研究方向为油气生产过程的风险评估与预警、事故预防与风险控制理论。E-mail:

    刘 音,教授

  • 基金资助:
    国家自然科学青年基金资助(51904169); 山东省自然科学基金资助(ZR2023ME093)

Text mining of causes of hot working accidents based on 24Model

NIU Maohui1(), LI Weijun1,**(), LIU Yin1, WANG Lu2   

  1. 1 College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao Shandong 266590, China
    2 Shandong Port Group Co.Ltd., Qingdao Shandong 266000, China
  • Received:2024-10-19 Revised:2024-12-21 Published:2025-03-28

摘要:

为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。

关键词: “2-4”模型(24Model), 动火作业, 事故致因, 文本挖掘, 指标体系

Abstract:

In order to systematically explore the root causes of industrial hot work accidents through a large amount of text data, a text mining method based on 24Model was proposed. Firstly, 220 hot work accident reports were collected and sorted as datasets, and a 24Model classifier based on Bidirectional Encoder Representations from Transformers (BERT) was constructed. The pre-trained model was used to train and evaluate the accident report dataset to construct a classification model. Then, through the combination weight of the Keyword extraction algorithm based on BERT (KeyBERT) and Term Frequency-Inverse Document Frequency (TF-IDF) algorithms, combined with the 24Model framework, a keyword index system for hot work accident text was established. Finally, the interrelationships between accident causes were obtained through the analysis of the network co-occurrence relationship between text-mining keywords. The results show that the BERT-based 24Model classifier model can systematically and accurately determine the causative categories of hot work accidents. The weight of the safety management system was the largest among the 4-level keyword index systems obtained through the combination of weights. Furthermore, 7 key causative factors of hot work accidents were obtained by combining them with the co-occurrence network analysis. This shows that 24Model can strengthen the interpretability of text mining results, which provides an important reference for the prevention and management of hot work accidents.

Key words: "2-4" model (24Model), hot work, accident causes, text mining, index system

中图分类号: