中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (8): 188-195.doi: 10.16265/j.cnki.issn1003-3033.2025.08.1566

• 安全工程技术 • 上一篇    下一篇

基于WGAN-XGBoost的ADS-B异常数据检测模型

李怀谦1,2(), 陈雨昊1, 付宇翔1, 沈嘉意3   

  1. 1 中国民航大学 空中交通管理学院, 天津 300300
    2 中国东方航空武汉有限责任公司, 湖北 武汉 430300
    3 中国民航大学 理学院, 天津 300300
  • 收稿日期:2025-04-10 修回日期:2025-06-20 出版日期:2025-08-28
  • 作者简介:

    李怀谦 (2003—),男,湖北随州人,本科,主要从事航空器动态监控体系方面的工作。E-mail:

  • 基金资助:
    国家级大学生创新创业训练计划项目(202410059019)

ADS-B abnormal data detection model based on WGAN-XGBoost

LI Huaiqian1,2(), CHEN Yuhao1, FU Yuxiang1, SHEN Jiayi3   

  1. 1 Air Traffic Management College, Civil Aviation University of China, Tianjin 300300, China
    2 China Eastern Airlines Wuhan Co., Ltd., Wuhan Hubei 430300, China
    3 College of Science, Civil Aviation University of China, Tianjin 300300, China
  • Received:2025-04-10 Revised:2025-06-20 Published:2025-08-28

摘要: 为保障航空运行安全、提升空域管理效率并增强系统对欺骗与干扰的防御能力,提出一种融合Wasserstein生成对抗网络(WGAN)和极限梯度提升(XGBoost)算法的异常数据检测模型。首先,通过WGAN学习预处理后ADS-B数据的内在分布特征,生成异常数据,将其与原始数据融合作为训练数据集;其次,基于XGBoost算法训练混合数据集,构建异常分类检测器;最后,通过试验与朴素贝叶斯、逻辑回归、感知机等基准模型开展性能对比。结果表明:与其他机器学习异常数据检测器相比,XGBoost 异常数据检测器在准确率、精确率、召回率、F1 分数等6项指标上均表现更优,其中准确率和精确率均超过0.999;模型检测 243 792 条数据的总耗时为 2.070 2 s,平均每条数据检测耗时 0.008 5 ms,在检测性能与时间成本间实现最优平衡,且经真实异常事件验证,具备良好的实用性与适用性。

关键词: Wasserstein生成对抗网络(WGAN), 极限梯度提升(XGBoost), 广播式自动相关监视(ADS-B), 异常数据检测, 朴素贝叶斯

Abstract:

To enhance aviation operation safety, improve airspace management efficiency, and enhance the defense capabilities of system against spoofing and interference, an anomaly data detection model was proposed based on WGAN-XGBoost. Firstly, WGAN was utilized to learn the intrinsic distribution of the preprocessed ADS-B data, generating abnormal data for augmenting and balancing the training dataset. Then, XGBoost algorithm was employed to train the mixed dataset, building the final abnormal classification detector. Finally, the performance comparisons were conducted through experiments with benchmark models such as Naive Bayes, Logistic Regression, and Perceptron. The results show that the performance of XGBoost is superior to that of all comparison models including accuracy, precision, recall, and F1 score, with accuracy and precision both exceeding 0.999. The total detection time for 243 792 data points is 2.070 2 s, with an average detection time of 0.008 5 ms per data point. It achieves the optimal balance between detection performance and time cost and has been validated by real abnormal events, demonstrating good practicality and applicability.

Key words: Wasserstein generative adversarial network (WGAN), extreme gradient boosting (XGBoost), automatic dependent surveillance-broadcast (ADS-B), abnormal data detection, naive Bayesian

中图分类号: