中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (S2): 1-6.doi: 10.16265/j.cnki.issn1003-3033.2023.S2.0027

• 安全社会科学与安全管理 •    下一篇

煤矿风险隐患评估系统

李林1(), 张津鹏1, 付恩三2,3,**(), 刘光伟2   

  1. 1 国能宝日希勒能源有限公司, 内蒙古 呼伦贝尔 021000
    2 辽宁工程技术大学 矿业学院, 辽宁 阜新 123000
    3 应急管理部 信息研究院, 北京 100029
  • 收稿日期:2023-07-10 修回日期:2023-10-05 出版日期:2023-12-30
  • 通讯作者:
    **付恩三(1988—),男,辽宁岫岩人,博士,工程师,主要从事矿山智能化、灾害风险分析以及应急管理等方面的研究。E-mail:
  • 作者简介:

    李 林 (1974—),男,内蒙古乌兰察布人,硕士,高级工程师,主要从事工程地质与水文地质研究等工作。E-mail:

    张津鹏 工程师

    刘光伟 教授

  • 基金资助:
    国家自然科学基金资助(51974144); 辽宁工程技术大学学科创新团队资助项目(LNTU20TD-07)

Study on coal mine risk hidden danger evaluation system

LI Lin1(), ZHANG Jinpeng1, FU Ensan2,3,**(), LIU Guangwei2   

  1. 1 Guoneng Baori Hiller Energy Co., Ltd., Hulunbuir Inner Mongolia 021000, China
    2 School of Mining Technology, Liaoning Technical University, Fuxin Liaoning 123000, China
    3 Information Institute, Ministry of Emergency Management of the PRC, Beijing 100029, China
  • Received:2023-07-10 Revised:2023-10-05 Published:2023-12-30

摘要:

为解决当前煤矿风险隐患处置不及时、各类风险隐患之间的关联关系不强以及煤矿风险隐患与事故风险之间可量化性不强等问题。首先,通过采集煤矿“三位一体”系统数据,进行语义识别,建立煤矿灾害事故链以及风险评价模型,量化分析煤矿风险;然后,建立包含煤矿综合风险动态评估、煤矿各专业风险动态评估、隐患时间分布、隐患地点分布、煤矿自查风险评估契合度比对分析、重复隐患数据分析、隐患重要度分析以及隐患年份与关键词分析等功能的煤矿风险评价系统。结果表明,通过煤矿风险隐患进行语义识别,可实现对煤矿各类灾害风险的量化表达、可视化展示和风险超前预警,为煤矿降低事故风险、及时隐患闭环处置,提供技术支撑。

关键词: 风险隐患, “三位一体”, 语义识别, 事故链, 煤矿灾害

Abstract:

The untimely disposal of the hidden danger, the weak correlation among the various hidden dangers, and the insufficient quantification between the hidden danger and the accident risk in coal mines are major problems to be solved. First, by collecting the data of the ″trinity″ system of coal mines, semantic recognition was performed, and the disaster accident chain in coal mines and the risk evaluation model were established to quantify and analyze the risk in coal mines. Then, a risk evaluation system for coal mines was built, including comprehensive risk dynamic evaluation, professional risk dynamic evaluation, hidden danger time distribution, hidden danger location distribution, self-checking risk evaluation coincidence analysis, repeated hidden danger data analysis, hidden danger importance analysis, and hidden danger year and keyword analysis of coal mines. The results show that the quantitative expression, visual display, and pre-warning of all kinds of disasters and risks in coal mines can be realized by the semantic recognition of hidden risks in coal mines, providing technical support for reducing the accident risk and ensuring timely closed-loop disposal of hidden dangers.

Key words: risk hidden danger, ″trinity″, semantic recognition, accident chain, coal mines disaster

中图分类号: