中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (11): 163-171.doi: 10.16265/j.cnki.issn1003-3033.2024.11.0368

• 公共安全 • 上一篇    下一篇

基于XGBoost的城市污水管道缺陷发生概率预测

马辉(), 贺鹰霞**(), 陈杨杨   

  1. 天津城建大学 经济与管理学院,天津 300384
  • 收稿日期:2024-06-12 修回日期:2024-08-15 出版日期:2024-11-28
  • 通信作者:
    ** 贺鹰霞(1997—),女,四川达州人,硕士研究生,主要研究方向为土木水利工程项目管理。E-mail:
  • 作者简介:

    马辉 (1979—),女,山西太原人,博士,教授,主要从事工程项目可持续建设管理、绿色建筑运营与管理等方面的研究。E-mail:

  • 基金资助:
    教育部人文社科项目(22YJCZH022); 天津市研究生科研创新项目(2022SKYZ330)

Prediction of urban sewage pipeline defect probability based on XGBoost

MA Hui(), HE Yingxia**(), CHEN Yangyang   

  1. School of Economics and Management, Tianjin Urban Construction University,Tianjin 300384,China
  • Received:2024-06-12 Revised:2024-08-15 Published:2024-11-28

摘要:

为提高城市污水管道缺陷检测效率,减少地毯式检测带来的资源浪费,降低环境安全风险,利用极致梯度提升(XGBoost)模型预测城市污水管道缺陷发生概率。首先,统计分析污水管道缺陷成因,筛选出能够表征管道缺陷状况的关键性指标,作为XGBoost模型的输入;其次,选择合适的目标函数和基学习器参数,利用网格搜索算法寻优基学习器的关键参数,完成模型训练和优化;最后,以广东省中山市某区域污水管网数据为例,验证XGBoost模型的有效性,根据模型输出寻找影响缺陷发生的主要因素和路径,并将区域内污水管网的缺陷发生概率划分出4个不同等级后进行可视化展示。结果表明:XGBoost模型在10折交叉验证下的曲线下面积(AUC)均值达到0.97,模型的预测准确率为93%;管道埋深、坡度和长度3个特征对管道缺陷发生概率变化的影响程度最高;当管长增加,坡度越大、埋深越浅,污水管道发生缺陷的概率会随之增长。

关键词: 极致梯度提升(XGBoost), 城市污水管道, 缺陷发生概率, 决策树, 预测模型

Abstract:

To improve the efficiency of urban sewage pipeline defect detection, reduce resource wastage resulting from indiscriminate inspection methods, and mitigate environmental safety risks, the XGBoost model was used to predict the probability of urban sewage pipeline defects. Firstly, the causes of sewage pipe defects were statistically analyzed to determine key indicators that can characterize the pipeline defects as the inputs of the XGBoost model. Secondly, appropriate objective functions and base learner parameters were selected. Then the model training and optimization were performed by a grid search algorithm to determine the key parameters of the base learner. Finally, the XGBoost model prediction performance was validated against an area of the sewage pipeline network in Zhongshan, Guangdong province. Moreover, the main factors and paths affecting defect probability were investigated based on the model output, and the defect probability of the sewage pipe network in the area was divided into 4 different levels for visualization.The results indicated that the average area under curve (AUC) of the XGBoost model was 0.97 under 10-fold cross-validation with a prediction accuracy of 93%. Pipeline depth, slope, and length had the greatest impact on the probability of pipeline defect. As the pipe length increases, the sewage pipe defect probability will increase if the slope becomes greater and the buried depth becomes shallower.

Key words: eXtreme Gradient Boosting(XGBoost), urban sewage pipelines, defect probability, decision tree, prediction model

中图分类号: