[1] |
HAWARI A, ALKADOUR, FIRAS E. Condition assessment model for sewer pipelines using fuzzy-based evidential reasoning[J]. Australian Journal of Civil Engineering, 2018, 16(1):45-67.
|
[2] |
ENNAOURI I, FUAMBA M. New integrated condition-assessment model for combined storm-sewer systems[J]. Journal of Water Resources Planning & Management, 2013, 139(1):53-64.
|
[3] |
罗同顺, 左剑恶, 干里里, 等. 基于模糊综合评判模型的污水管道缺陷定量化评价方法[J]. 环境科学学报, 2011, 31(10):2 204-2 209.
|
|
LUO Tongshun, ZUO Jian'e, GAN Lili, et al. A quantitative evaluation method for sewage pipe defects based on fuzzy comprehensive evaluation model[J]. Acta Scientiae Circumstantiae, 2011, 31(10):2 204-2 209.
|
[4] |
徐得潜, 张倩. 基于AHP-GRA的合流制污水管道风险评估[J]. 安全与环境学报, 2019, 19(4):1 149-1 154.
|
|
XU Deqian, ZHANG Qian. Risk assessment of combined sewage pipe based on AHP-GRA[J]. Journal of Safety and Environment, 2019, 19(4):1 149-1 154.
|
[5] |
巴振宁, 王鸣铄, 梁建文. 基于改进F-ANP方法的市政排水管网运行安全风险评估[J]. 安全与环境工程, 2020, 27(6):208-216.
|
|
BA Zhenning, WANG Mingshuo, LIANG Jianwen. Operational safety risk assessment of municipal drainage network based on improved F-ANP method[J]. Safety and Environmental Engineering, 2020, 27(6):208-216.
|
[6] |
ALTARABSHEH A, MARIO V, AMR K. New approach for critical pipe prioritization in wastewater asset management Planning[J]. American Society of Civil Engineers, 2018, 32(5): DOI: 10.1061/(ASCE)CP.1943-5487.0000784.
|
[7] |
KABIR G, BALEK N B C, TESFAMARIAM S. Sewer structural condition prediction integrating bayesian model averaging with Logistic regression[J]. Journal of Performance of Constructed Facilities, 2018, 32 (3):21-24.
|
[8] |
黄荣敏, 杜预, 张浩, 等. 基于风险指数法的排水管道健康状况影响因素研究[J]. 中国给水排水, 2023, 39(9):65-71.
|
|
HUANG Rongmin, DU Yu, ZHANG Hao, et al. Influencing factors of drainage pipeline health based on risk index method[J]. China Water & Wastewater, 2023, 39(9):65-71.
|
[9] |
杨利伟, 邢雯雯, 张莉平, 等. 基于GA优化BP神经网络模型的污水管道系统健康状况评估[J]. 给水排水, 2021, 57(9):123-131.
|
|
YANG Liwei, XING Wenwen, ZHANG Liping, et al. Health assessment of sewage pipe system based on GA-optimized BP neural network model[J]. Water & Wastewater Engineering, 2021, 57(9):123-131.
|
[10] |
郑茂辉, 刘少非, 柳娅楠, 等. 基于粒子群优化极限学习机的排水管结构状况评价[J]. 同济大学学报:自然科学版, 2020, 48 (4): 513-516,551.
|
|
ZHENG Maohui, LIU Shaofei, LIU Ya'nan, et al. Evaluation of drainage pipe structure based on particle swarm optimization extreme learning machine[J]. Journal of Tongji University:Natural Science, 2020, 48 (4): 513-516,551.
|
[11] |
郑茂辉, 刘少非. GA优化ELM神经网络的排水管道缺陷诊断[J]. 哈尔滨工业大学学报, 2021, 53(5):59-64.
|
|
ZHENG Maohui, LIU Shaofei. Ga-optimized ELM neural network for drainage pipe defect diagnosis[J]. Journal of Harbin Institute of Technology, 2021, 53(5):59-64.
|
[12] |
王颖, 王圃, 王梓璇, 等. 山地城市供水管网水质安全风险评价方法[J]. 中国安全科学学报, 2023, 33(8):205-211.
doi: 10.16265/j.cnki.issn1003-3033.2023.08.2146
|
|
WANG Ying, WANG Pu, WANG Zixuan, et al. Water quality safety risk assesment method for water supply network inmountainous cities[J]. China Safety Science Journal, 2023, 33(8):205-211.
doi: 10.16265/j.cnki.issn1003-3033.2023.08.2146
|
[13] |
陈少博, 杨宇轩, 王浩, 等. 南方滨海城市排水管网典型缺陷类型普查及成因机制分析[J]. 给水排水, 2022, 58(增1):464-470.
|
|
CHEN Shaobo, YANG Yuxuan, WANG Hao, et al. Survey of typical defect types and analysis of cause mechanism of drainage pipe network in coastal cities of southern China[J]. Water & Wastewater Engineering, 2022, 58(S1):464-470.
|
[14] |
李若晗. 城市污水管道检测、评价与影响因素研究[D]. 北京: 清华大学, 2016.
|
|
LI Ruohan. Research on detection, evaluation and influencing factors of urban sewage pipeline[D]. Beijing: Tsinghua University, 2016.
|
[15] |
朱彤, 秦丹, 魏雯, 等. 基于机器学习的公交驾驶员事故风险识别及影响因素研究[J]. 中国安全科学学报, 2023, 33(2):23-30.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0034
|
|
ZHU Tong, QIN Dan, WEI Wen, et al. Research on accident nisk identification and infuencing factors of bus drivers based on machine learning[J]. China Safety Science Journal, 2023, 33 (2):23-30.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0034
|