中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (9): 121-130.doi: 10.16265/j.cnki.issn1003-3033.2024.09.0960

• 安全工程技术 • 上一篇    下一篇

基于改进遗传算法的电厂粉尘监测节点覆盖控制研究

王博(), 商宇航, 姚立超, 蒋永清**()   

  1. 哈尔滨理工大学 测控技术与通信工程学院,黑龙江 哈尔滨 150080
  • 收稿日期:2024-03-14 修回日期:2024-06-19 出版日期:2024-09-28
  • 通信作者:
    ** 蒋永清(1971—),男,黑龙江哈尔滨人,硕士,教授,主要从事工业安全风险评估、安全风险预测预警算法、智能保障技术等研究工作。E-mail:
  • 作者简介:

    王 博 (1989—),男,黑龙江哈尔滨人,博士,副教授,主要从事工业安全风险评估、安全风险预测预警算法、智能保障技术等研究工作。E-mail:

  • 基金资助:
    黑龙江省“双一流”学科协同创新成果项目(LJGXCG2022-068)

Research on power plant dust monitoring node coverage control based on improved genetic algorithm

WANG Bo(), SHANG Yuhang, YAO Lichao, JIANG Yongqing**()   

  1. School of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin Heilongjiang 150080, China
  • Received:2024-03-14 Revised:2024-06-19 Published:2024-09-28

摘要:

为有效降低粉尘环境监测中存在盲区和管控缺失的风险,优化火电厂粉尘环境监测系统的节点覆盖控制,延长无线传感器网络(WSN)寿命,提出一种基于改进遗传算法的节能优化方法。首先构建基于节点覆盖率、节点布设总能耗和节点通信传输总能耗的网络覆盖质量目标函数;然后针对传统遗传算法存在局部最优和编码重复的问题,提出整数编码的染色体组合方案、自适应调节交叉和变异概率的方法,以及精英保留策略;最后通过仿真对比分析,确定优化后的节点数量和分布方案。结果表明:改进的遗传算法显著提高了收敛速度,所需迭代次数减少至20次,适应度值优化52.18%;在节点部署和覆盖研究中,优化后的节点数量为42个,覆盖率达97.28%,节点休眠率为76.19%,有效提升了火电厂粉尘环境监测系统的节能效果。

关键词: 改进遗传算法, 电厂粉尘, 环境监测, 节点覆盖控制, 无线传感器网络(WSN), 精英保留策略

Abstract:

In order to effectively reduce the risk of blind zones and lack of control in dust environment monitoring, optimize the node coverage control of the dust environment monitoring system in thermal power plants, and prolong the lifetime of WSN, an energy-saving optimization method based on improved genetic algorithms was proposed. Firstly, based on node coverage, total energy consumption of node deployment and total energy consumption of node communication and transmission, the network coverage quality objective function was constructed. Then, aiming at the problems of the local optimization and coding duplication existing in traditional genetic algorithms, the chromosome combination scheme of integer coding, the adaptive adjustment method of crossover and mutation probability and the elite retention strategy were proposed. Finally, the simulation comparison and analysis were performed to determine the optimized node number and distribution scheme. The results show that the improved genetic algorithm significantly improves the convergence speed. The number of iterations required is reduced to 20, and the fitness value is optimized by 52.18%. In the node deployment and coverage study, the optimized number of nodes is 42, the coverage rate is 97.28%, and the node dormancy rate is 76.19%, which effectively improves the energy-saving effect of the dust environmental monitoring system in the thermal power plant.

Key words: improved genetic algorithm, power plant dust, environment monitoring, node coverage control, wireless sensor network (WSN), elite retention strategy

中图分类号: