中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (4): 59-66.doi: 10.16265/j.cnki.issn1003-3033.2025.04.0476

• 安全工程技术 • 上一篇    下一篇

基于时空关联规则与LSTM的机场进港延误等级预测

李善梅 副教授1(), 王端阳1, 唐锐2, 李艳伟 教授3, 李锦辉1, 纪亚宏1   

  1. 1 中国民航大学 空中交通管理学院,天津 300300
    2 中国民用航空局 运行监控中心,北京 100710
    3 中国民航大学 经济与管理学院,天津 300300
  • 收稿日期:2024-12-15 修回日期:2025-02-16 出版日期:2025-04-28
  • 作者简介:

    李善梅 (1982—),女,天津人,博士,副教授,主要从事空中交通运输规划与管理方面的研究。E-mail:

  • 基金资助:
    天津市自然科学基金资助(24JCYBJC01170); 民航安全能力建设资金资助(ZH2025004); 民航安全能力建设资金资助(SKZ49420220027); 中国民航大学研究生科研创新项目(2024YJSKC03001)

Prediction of airport arrival delay level based on spatiotemporal association rules and LSTM

LI Shanmei1(), WANG Duanyang1, TANG Rui2, LI Yanwei3, LI Jinhui1, JI Yahong1   

  1. 1 College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
    2 Operation Supervisory Centre, Civil Aviation Administration of China, Beijing 100710, China
    3 College of Economics and Management, Civil Aviation University of China, Tianjin 300300, China
  • Received:2024-12-15 Revised:2025-02-16 Published:2025-04-28

摘要:

为提升空中交通运行安全,提出一种基于时空关联规则挖掘和深度学习相结合的延误等级预测方法。首先,选取平均航班延误时间和延误率作为机场进港延误度量指标,并分析其时空关联特性;其次,基于模糊C均值(FCM)聚类算法划分机场进港延误等级,并在此基础上,基于频繁模式增长(FP-Growth)算法挖掘机场进港延误的时空关联规则;然后,基于规则数据以及延误指标数据构建样本数据,作为长短时记忆(LSTM)模型的输入,输出为未来时段机场进港延误等级,同时引入注意力机制,学习不同规则对预测结果的影响程度;最后,采用美国航班数据进行算例分析。结果表明:总体预测的平均准确率达到0.91,不同时段的预测准确率均在80%以上,注意力层网络的连接权重可解释预测结果。

关键词: 时空关联规则, 长短时记忆(LSTM), 机场进港, 延误等级, 延误预测, 空中交通管理

Abstract:

To improve the safety of air traffic operations, a delay level prediction method based on the combination of spatiotemporal association rule mining and deep learning was proposed. Firstly, the average flight delay time and delay rate were selected as airport delay metrics, and their spatial-temporal correlation characteristics were analyzed. Secondly, the airport delay levels were identified based on Fuzzy-C Means (FCM)clustering algorithm, and the spatiotemporal association rules of airport delay were mined based on (FP(Frequent Pattern)Growth) algorithm. Thirdly, sample data was constructed based on association rules and delay time series, which was put into LSTM model to predict the future airport delay levels. At the same time, attention mechanism was introduced into the prediction model to learn the influence of different rules on prediction. Finally, the actual US flight data were collected for example analysis. The results show that the average prediction accuracy of overall delay levels reaches 0.91 and the prediction accuracy of different periods is all larger than 80%. The connection weight of the attention layer network reflects the influence of each rule on the prediction, which can be used to explain the prediction results.

Key words: spatiotemporal association rules, long short term memory (LSTM), airport arrival, delay level, delay prediction, air traffic management

中图分类号: