[1] |
李术才, 张伟杰, 张庆松, 等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学, 2014, 35(3): 744-752.
|
|
LI Shucai, ZHANG Weijie, ZHANG Qingsong, et al. Research on advantage fracture grouting mechanism and controlled grouting method in water-rich fault zone[J]. Rock and Soil Mechanics, 2014, 35(3): 744-752.
|
[2] |
田强, 孙斐, 范会峰, 等. 综放工作面破碎围岩超前注浆加固技术研究[J]. 煤炭科学技术, 2020, 48(增2): 194-198.
|
|
TIAN Qiang, SUN Fei, FAN Huifeng, et al. Study on advanced grouting reinforcement technology of broken surrounding rock in fully-mechanized top-coal caving face[J]. Coal Science and Technology, 2020, 48(S2): 194-198.
|
[3] |
李文洲, 康红普, 姜志云, 等. 深部裂隙煤岩体变形破坏机理及高压注浆改性强化试验研究[J]. 煤炭学报, 2021, 46(3): 912-923.
|
|
LI Wenzhou, KANG Hongpu, JIANG Zhiyun, et al. Deformation failure mechanism of fractured deep coal rock mass and high pressure grouting modification strengthening testing[J]. Journal of China Coal Society, 2021, 46(3): 912-923.
|
[4] |
赵康, 王庆, 王军强, 等. 破碎围岩结构面特征及稳定性分析[J]. 中国安全科学学报, 2019, 29(9): 138-143.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.022
|
|
ZHAO Kang, WANG Qing, WANG Junqiang, et al. Structural plane characteristics and stability of broken surrounding rocks[J]. China Safety Science Journal, 2019, 29(9): 138-143.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.022
|
[5] |
孙长伦, 李桂臣, GOMAH M E, 等. 基于纳米压痕技术的破碎煤样力学特性实验研究[J]. 煤炭学报, 2020, 45(增2): 682-691.
|
|
SUN Changlun, LI Guichen, GOMAH M E, et al. Experimental investigation on the mechanical properties of crushed coal samples based on the nanoindentation technique[J]. Journal of China Coal Society, 2020, 45(S2): 682-691.
|
[6] |
盖海东, 冯春花, 董一娇, 等. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
|
|
GE Haidong, FENG Chunhua, DONG Yijiao, et al. A review on the application of nanoindentation in the research of cement-based materials[J]. Materials Reports, 2020, 34(7): 7107-7114.
|
[7] |
李西凡, 熊祖强, 王鹏. 高水巷旁充填材料力学性能改进试验研究[J]. 中国安全科学学报, 2020, 30(5): 95-100.
doi: 10.16265/j.cnki.issn1003-3033.2020.05.015
|
|
LI Xifan, XIONG Zuqiang, WANG Peng. Experimental study on improvement of mechanical properties of high-water filling materials in gob-side entry retaining[J]. China Safety Science Journal, 2020, 30(5): 95-100.
doi: 10.16265/j.cnki.issn1003-3033.2020.05.015
|
[8] |
LIU Kouqi, OSTADHASSAN M, BUBACH B, et al. Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken Shale[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 181-190.
|
[9] |
孙长伦, 李桂臣, 许嘉徽, 等. 砂岩矿物组分流变特性纳米压痕实验研究[J]. 岩石力学与工程学报, 2021, 40(1): 77-87.
|
|
SUN Changlun, LI Guichen, XU Jiahui, et al. Rheological characteristics of mineral components in sandstone based on nanoindentation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 77-87.
|
[10] |
蔡益栋, 贾丁, 邱峰, 等. 基于纳米压痕的煤岩微观力学特性及其影响因素剖析[J]. 煤炭学报, 2023, 48(2): 879-890.
|
|
CAI Yidong, JIA Ding, QIU Feng, et al. Micromechanical properties of coal and its influencing factors based on nanoindentation[J]. Journal of China Coal Society, 2023, 48(2): 879-890.
|
[11] |
曹鹏, 芮执元, 付蓉, 等. 晶粒尺寸对γ-TiAl合金力学性能影响的纳米压痕研究[J]. 稀有金属材料与工程, 2021, 50(6): 2052-2060.
|
|
CAO Peng, RUI Zhiyuan, FU Rong, et al. Effect of grain size on mechanical properties of γ-TiAl alloy by nanoindentation[J]. Rare Metal Materials and Engineering, 2021, 50(6): 2052-2060.
|
[12] |
WANG Yuli, ZHANG Wanyu, LOU Guanghui, et al. Effect of limestone powder on mechanical properties of concrete based on Griffith's microcracking theory[J]. Construction and Building Materials, 2024, 449: DOI: 10.1016/j.conbuildmat.2024.138413.
|
[13] |
SHI Xiangyun, DAVID M, LUAKS S, et al. Unraveling mudstone compaction at microscale: a combined approach of nanoindentation mapping and machine learning data analysis[J]. Marine and Petroleum Geology, 2024:DOI: 10.1016/j.marpetgeo.2024.107083.
|
[14] |
TANG Ding, ZHAO Leilei, WANG Huamiao, et al. The role of rough surface in the size-dependent behavior upon nano-indentation[J]. Mechanics of Materials, 2021, 157:DOI: 10.1016/j.mechmat.2021.103836.
|
[15] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
|
[16] |
陈小文, 韩宇栋, 丁小平, 等. 水泥净浆弹性模量的纳米压痕表征与多尺度计算[J]. 上海交通大学学报, 2022, 56(9): 1199-1207.
doi: 10.16183/j.cnki.jsjtu.2021.089
|
|
CHEN Xiaowen, HAN Yudong, DING Xiaoping, et al. Multiscale calculation of elastic modulus of cement paste based on grid nanoindentation technology[J]. Journal of Shanghai Jiaotong University, 2022, 56(9): 1199-1207.
doi: 10.16183/j.cnki.jsjtu.2021.089
|
[17] |
李一凡, 管学茂, 刘松辉, 等. 压痕点数及解卷积法对水泥纳米压痕试验的影响[J]. 建筑材料学报, 2021, 24(2): 291-295,312.
|
|
LI Yifan, GUAN Xuemao, LIU Songhui, et al. Effect of number of indentation points and deconvolution method on cement nanoindentation test[J]. Journal of Building Materials, 2021, 24(2): 291-295,312.
|
[18] |
陆银龙, 贺梦奇, 李文帅, 等. 岩石结构面注浆加固微观力学机制与浆-岩黏结界面结构优化[J]. 岩石力学与工程学报, 2020, 39(9): 1808-1818.
|
|
LU Yinlong, HE Mengqi, LI Wenshuai, et al. Micromechanical mechanisms of grouting reinforcement in rock joints and microstructure optimization of grout-rock bonding interfaces[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1808-1818.
|
[19] |
李桂臣, 孙长伦, 孙元田, 等. 基于“两介质-三界面”模型的散煤注浆固结宏细观规律[J]. 煤炭学报, 2019, 44(2): 427-434.
|
|
LI Guichen, SUN Changlun, SUN Yuantian, et al. Macroscopic and microcosmic consolidation law of loose coal grouting based on the "two media-three interfaces" model[J]. Journal of China Coal Society, 2019, 44(2): 427-434.
|