[1] |
阳东, 李萍. 抑制倾斜隧道烟气流动热压主导模式的临界风压[J]. 中国安全科学学报, 2022, 32(5):41-47.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0938
|
|
YANG Dong, LI Ping. Critical mechanical pressure rise for preventing buoyancy-dominated flow pattern in inclined tunnel fire with longitudinal ventilation[J]. China Safety Science Journal, 2022, 32(5): 41-47.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0938
|
[2] |
杨宇轩, 程辉航, 龙增, 等. 阻塞效应对隧道火灾烟气温度影响试验研究[J]. 中国安全科学学报, 2022, 32(10):135-141.
doi: 10.16265/j.cnki.issn1003-3033.2022.10.1792
|
|
YANG Yuxuan, CHENG Huihang, LONG Zeng, et al. Experimental study on effect of blockage on smoke temperature in tunnel fire[J]. China Safety Science Journal, 2022, 32(10): 135-141.
doi: 10.16265/j.cnki.issn1003-3033.2022.10.1792
|
[3] |
ZHANG Shaogang, HUANG Yilong, SHI Long, et al. A fly-wing smoke screen to improve the smoke exhaustion performance of a vertical shaft in road tunnel[J]. Tunnelling and Underground Space Technology, 2021, 113:DOI: 10.1016/j.tust.2021.103983.
doi: 10.1016/j.tust.2021.103983
|
[4] |
郑梓德, 侯龙飞. 自动挡烟垂壁对隧道火灾的控制研究[J]. 安全与环境工程, 2011, 18(5): 69- 73.
|
|
ZHENG Zide, HOU Longfei. Study on the effect of automatic smoke screen on tunnel fire[J]. Safety and Environmental Engineering, 2011, 18(5): 69- 73.
|
[5] |
GB 51251—2017, 建筑防烟排烟系统技术标准[S].
|
|
GB 51251-2017, Technical standard for smoke management systems in buildings[S].
|
[6] |
WILKINSON D L, WOOD I R. A rapidly varied flow phenomenon in a two-layer flow[J]. Journal of Fluid Mechanic, 1971, 47(2): 241-256.
|
[7] |
MEHROTRA S C. An alternative formulation of the problem of density jump[J]. Tellus, 1974, 26(5): 579-581.
|
[8] |
EZHOVA E V, ZILITINKEVITCH S S, RVBUSHKINA G V, et al. On the application of a turbulence closure modified model to the description of the density jump evolution in a stably stratified medium[J]. Izvestiya Atmospheric and Oceanic Physics, 2016, 52(3): 294-300.
doi: 10.1134/S0001433816030038
|
[9] |
DELICHATSIOS M A. The flow of fire gases under a beamed ceiling[J]. Combustion and Flame, 1981, 43(1): 1-10.
doi: 10.1016/0010-2180(81)90002-X
|
[10] |
REGEV A, HASSID S, POREH M. Density jumps in smoke flow along horizontal ceilings[J]. Fire Safety Journal, 2004, 39(6): 465-479.
doi: 10.1016/j.firesaf.2004.04.002
|
[11] |
REGEV A, HASSID S, POREH M. Calculation of entrainment in density jumps[J]. Environmental Fluid Mechanics, 2006, 6 (5): 407-424.
doi: 10.1007/s10652-006-9000-9
|
[12] |
QU Liang, CHOW Wanki. Numerical studies on density jump in a long corridor fire[J]. Tunnelling and Underground Space Technology, 2012, 32: 113-126.
doi: 10.1016/j.tust.2012.05.007
|
[13] |
XI Yanhong, CHOW Wanki, MAO Jun. Aerodynamics simulation on density jump in a long corridor fire[J]. Tunnelling and Underground Space Technology, 2015, 50: 23-31.
doi: 10.1016/j.tust.2015.06.008
|
[14] |
HUANG Jinlei, ZHU Guoqing, YU Mengwei, et al. Effect of smoke barrier in narrow space on smoke flow utilizing CFD[J]. Procedia Engineering, 2016, 135:142-150.
doi: 10.1016/j.proeng.2016.01.095
|
[15] |
POREH M, MARSHALL N R, REGEV A. Entrainment by adhered two-dimensional plumes[J]. Fire Safety Journal, 2008, 43(5): 344-350.
doi: 10.1016/j.firesaf.2007.11.001
|
[16] |
YANG Dong, DING Yao, DU Tao, et al. Buoyant back-layering and the critical condition for preventing back-layering fluid in inclined tunnels under natural ventilation: brine water experiments[J]. Experimental Thermal and Fluid Science, 2018, 90:319-329.
doi: 10.1016/j.expthermflusci.2017.08.015
|
[17] |
DU Tao, YANG Dong, WEI Haibin, et al. Propagation and entrainment of buoyancy-driven flows in a narrow horizontal space and implications for buoyant contaminant transport under natural ventilation[J]. Building and Environment, 2018, 132:214-224.
doi: 10.1016/j.buildenv.2018.02.001
|
[18] |
LINDEN F P. The fluid mechanics of natural ventilation[J]. Annual Review of Fluid Mechanics, 1999, 31(1):201-238.
doi: 10.1146/fluid.1999.31.issue-1
|