[1] |
GAN Bo, LI Bing, JIANG Haipeng, et al. Ethylene/polyethylene hybrid explosions: part 1 effects of ethylene concentrations on flame propagations[J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 93-102.
|
[2] |
MITTAL M, GUHA B K. Minimum ignition temperature of polyethylene dust: a theoretical model[J]. Fire and Materials, 1997, 21: 169-177.
|
[3] |
LIN Chendi, QI Yingquan, GAN Xiangyang, et al. Investigation into the suppression effects of inert powders on the minimum ignition temperature and the mini-mum ignition energy of polyethylene dust[J]. Processes, 2020, 8(3): DOI: 10.3390/pr8030294.
|
[4] |
马冉, 高建村, 杨凯, 等. 聚乙烯粉尘爆炸研究进展[J]. 中国粉体技术, 2017, 23(6):59-63.
|
|
MA Ran, GAO Jiancun, YANG Kai, et al. Research progress on polyethylene dust explosion[J]. Chinese Powder Technology, 2017, 23(6): 59-63.
|
[5] |
PENG Lei, CAO JiaoJiao, ZHAO Yu, et al. Minimum ignition energy of LDPE dust/ethylene hybrid mixture[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: DOI: 10.1016/J.JLP.2021.104546.
|
[6] |
PENG Lei, CAO Jiaojiao, MA Ruirui, et al. Risk assessment method of polyethylene dust explosion based on explosion parameters[J]. Journal of Loss Prevention in the Process Industries, 2021, 69: DOI: 10.1016/J.JLP.2021.104397.
|
[7] |
关世钧. 浅析辽化“2·23”爆震事故的成因及预防[J]. 消防科学与技术, 2002, 21(5):83-85.
|
|
GUAN Shijun. Analysis of the causes and prevention of "2·23" knock accident in Liao hua[J]. Fire Science and Technology, 2002, 21(5): 83-85.
|
[8] |
SONG Lin, LIU Zhengtang, QIAN Jifa, et al. Inertant effects and mechanism of Al(OH) 3 powder on polyethylene dust explosions based on flame propagation behavior and thermal analysis[J]. Fire Safety Journal, 2021, 124: DOI: 10.1016/J.FIRESAF.2021.103392.
|
[9] |
WANG Yang, YANG Jingjing, HE Jia, et al. Inhibition effect of KHCO3 and KH2PO4 on ethylene explosion[J]. ACS Omega, 2023, 8(8): 7 566-7 574.
|
[10] |
王燕, 李忠, 张一民, 等. 不同磷酸氢盐作用下的乙烯抑爆特性及机制[J]. 中国安全科学学报, 2022, 32(5):48-54.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1564
|
|
WANG Yan, LI Zhong, ZHANG Yimin, et al. The explosion suppression characteristics and mechanisms of ethylene under different effects of hydrogen phosphate salts[J]. China Safety Science Journal, 2022, 32(5): 48-54.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1564
|
[11] |
王燕, 杨帅帅, 张国涛, 等. 改性沸石抑制乙烯爆炸性能及机理研究[J]. 化工学报, 2023, 74(12):5 048-5 060.
|
|
WANG Yan, YANG Shuaishuai, ZHANG Guotao, et al. Research on the inhibition performance and mechanism of ethylene explosion by modified zeolite[J]. Journal of Chemical Engineering, 2023, 74(12): 5 048-5 060.
|
[12] |
JIANG Bingyou, DING Dawei, SU Mingqing, et al. Experimental study on the explosion suppression characteristics of polyethylene dust by ammonium polyphosphate[J]. Powder Technology, 2024, 437: DOI: 10.1016/J.POWTEC.2024.119491.
|
[13] |
ZHANG Yansong, PAN Zhichao, YANG Junjie, et al. Study on the suppression mechanism of (NH 4) 2CO 3 and SiC for polyethylene deflagration based on flame propagation and experimental analysis[J]. Powder Technology, 2022, 399: DOI: 10.1016/J.POWTEC.2022.117193.
|
[14] |
WANG Yan, LIN Chendi, QI Yingquan, et al. Suppression of polyethylene dust explosion by sodium bicarbonate[J]. Powder Technology, 2020, 367: 206-212.
|
[15] |
ADDAI E K, GABELl D, KRAUSE U. Lower explosion limit of hybrid mixtures of burnable gas and dust[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 499-506.
|
[16] |
SONG Shixiang, CHENG Yanggan, MENG Xiangrui, et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel[J]. Process Safety and Environmental Protection, 2019, 122: 281-287.
doi: 10.1016/j.psep.2018.12.023
|
[17] |
喻健良, 纪文涛, 孙会利, 等. 乙烯/聚乙烯两相体系爆炸特性[J]. 化工学报, 2017, 68(12):4 841-4 847.
|
|
YU Jianliang, JI Wentao, SUN Huili, et al. Explosion characteristics of ethylene/polyethylene mixed system[J]. CIESC Journal, 2017, 68(12): 4 841-4 847.
|
[18] |
JI Wentao, YAN Xinqing, SUN Huili, et al. Comparative analysis of the explosibility of several different hybrid mixtures[J]. Powder Technology, 2018, 325: 42-48.
|
[19] |
ZHOU Jianhua, JIANG Haipeng, ZHOU Yonghao, et al. Flame suppression of 100 nm PMMA dust explosion by KHCO3 with different particle size[J]. Process Safety and Environment Protection, 2019, 132: 303-312.
|
[20] |
GB/T 16426—1996, 粉尘云最大爆炸压力和最大压力上升速率测定方法[S].
|
|
GB/T 16426-1996, Method for determining the maximum explosion pressure and maximum pressure rise rate of dust clouds[S].
|
[21] |
EN 14034-3-2011, Determination of the explosive properties of the dust clouds. part 3: determination of low explosion limit LEL; German version EN 14034-3-2006+A1-2011[S].
|
[22] |
RUDOLF K, MICHAL K, MARIAN G. Suppression of dust explosions by means of an active superfast explosion-suppression system of five liter volume[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(1): DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i1.10.
|
[23] |
JIANG Haipeng, BI Mingshu, LI Bei, et al. Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4, Combust[J]. Combustion and Flame, 2019, 200: 97-114.
doi: 10.1016/j.combustflame.2018.11.016
|
[24] |
WILLIAMS A, FLEMING J W. Suppression mechanisms of alkali metal compounds[C]. Halon Options Technical Working Conference, 1999: 157-169.
|
[25] |
罗振敏, 康凯. CO2抑制甲烷-空气链式爆炸微观机制的仿真分析[J]. 中国安全科学学报, 2015, 25(5):42-48.
|
|
LUO Zhenmin, KANG Kai. Simulation analysis of microscopic mechanism of CO2 inhibition of methane-air chain explosion[J]. China Safety Science Journal, 2015, 25(5): 42-48.
|
[26] |
WANG Yan, CHENG Yishen, YU Minggao, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure[J]. Journal of Hazardous Materials, 2017, 335: 84-91.
|
[27] |
路长, 刘洋, 王鸿波, 等. CO2、H2对CH4/Air预混气爆炸特性的影响[J]. 安全与环境学报, 2018, 18(5):1 788-1 795.
|
|
LU Chang, LIU Yang, WANG Hongbo, et al. Experimental study of the effects of CO2/H2 on the characteristic features of methane/air bursts[J]. Journal of Safety and Environment, 2018, 18(5): 1 788-1 795.
|
[28] |
LI Rui, HE Guoqiang, QIN Fei, et al. Skeletal chemical kinetic model generation and analysis for combustion of ethylene[J]. Aerospace Power, 2018, 33(9): 2 074-2 083.
|