中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (7): 122-132.doi: 10.16265/j.cnki.issn1003-3033.2025.07.0942

• 安全工程技术 • 上一篇    下一篇

基于Bentley Hammer的系留无人机载竖直管缆水锤效应研究

李聪1(), 侯乐乐1, 金衍科1, 武卓琦1, 周睿2, 姚一娜3   

  1. 1 中国矿业大学(北京) 应急管理与安全工程学院, 北京 100083
    2 清华大学 安全科学学院, 北京 100084
    3 中国人民公安大学 国家安全学院, 北京 100038
  • 收稿日期:2025-03-11 修回日期:2025-05-15 出版日期:2025-07-28
  • 作者简介:

    李聪 (1991—),男,安徽淮南人,博士,副教授,主要从事森林火灾动力学、火灾图像识别等方面的研究。E-mail:

    周睿 研究员

    姚一娜 讲师

  • 基金资助:
    国家重点研发计划项目(2022YFC3090502); 国家自然科学基金资助(52304274); 中央高校基本科研业务费专项资金资助(2023ZKPYAQ06); 中国民航大学民航热灾害防控与应急重点实验室开放基金资助(RZH2023-KF02)

Study on water hammer effects in tethered UAV vertical pipe cable systems using Bentley Hammer

LI Cong1(), HOU Lele1, JIN Yanke1, WU Zhuoqi1, ZHOU Rui2, YAO Yina3   

  1. 1 School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    2 Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
    3 School of National Security, People's Public Security University of China, Beijing 100038, China
  • Received:2025-03-11 Revised:2025-05-15 Published:2025-07-28

摘要: 为解决系留无人机(UAV)高层灭火中竖直管缆内压力和流量的骤变影响UAV稳定性的问题,利用Bentley Hammer软件模拟竖直管缆在启停泵过程中的水锤效应,改变管缆竖直高度(160~220 m)及输运流量(260~320 L/min),分析地面泵端和UAV端的压力、流量以及水锤力的变化。结果表明:启停泵过程中,水锤现象可划分为静止/稳态阶段、骤升/骤减阶段、稳态/振荡减弱阶段。启泵时,地面泵端水锤力与管缆高度成正比,水锤力峰值从7 176.502 N升至8 413.785 N,冲击更强但响应延迟;UAV端水锤力受管缆高度影响小。停泵时,地面泵端水锤力峰值随管缆高度增加而增大,从4 316.401 N升至7 219.388 N,管道破裂风险增加;UAV端反向水锤力与管缆高度成反比,从10 616 N降至8 158.870 N,表明管缆高度越低更易导致UAV姿态失控。输运流量方面,启泵时流量对水锤力峰值影响小;停泵时,地面泵端水锤力峰值与流量成正比,从6 693.8 N升至7 541.606 N,破坏风险增加;UAV端反向水锤力峰值随流量增加而减小,从9 866.063 N降至8 471.582 N,流量越小越易导致系留系统损坏。

关键词: Bentley Hammer, 系留无人机(UAV), 竖直管缆, 水锤效应, 停泵水锤, 水锤力

Abstract:

In order to address the issue of sudden changes in pressure and flow on the stability of the tethered UAV during high-rise firefighting, the water hammer effect in the vertical pipe cable during the start pump and pump stop was simulated using Bentley Hammer software. The vertical height of the pipe cable was controlled from 160 to 220 m, and the transportation flow was set from 260 to 320 L/min. The variation laws of pressure, flow and water hammer force at the locations of the pump and tethered UAV were analyzed. The results show that the water hammer phenomenon during the start pump and pump stops can be divided into the static/steady state stage, the sudden rise/drop stage, and the steady state/oscillation weakening stage. When starting the pump, the water hammer force at the ground pump end is proportional to the pipe cable height, with the maximum water hammer force increasing from 7 176.502 N to 8 413.785 N, indicating a stronger impact and a delayed response. The water hammer force of the UAV end is minimally affected by the pipe cable height. When the pump is stopped, the maximum water hammer force at the ground pump end increases with the pipe cable height, from 4 316.401 N to 7 219.388 N, increasing the risk of pipeline rupture. The reverse water hammer force at the UAV end is inversely proportional to the pipe cable height, decreasing from 10 616 N to 8 158.870 N, indicating that a lower pipe cable height is more likely to induce the UAV attitude instability. Regarding the transport flow, during pump start-up, the transport flow has a small impact on the peak water hammer force. When the pump is stopped, the peak water hammer force at the ground pump end is proportional to flow, increasing from 6 693.8 N to 7 541.606 N, increasing the risk of damage. The peak reverse water hammer force at the UAV end decreases with the increase of flow, from 9 866.063 N to 8 471.582 N. The smaller the flow rate, the more likely it is to cause damage to the tethering system.

Key words: Bentley Hammer, tethered unmanned aerial vehicle (UAV), vertical pipe cable, water hammer effect, water hammer of pump stop, water hammer force

中图分类号: