中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (2): 160-167.doi: 10.16265/j.cnki.issn1003-3033.2025.02.0779

• 安全工程技术 • 上一篇    下一篇

基于QAR的民机异常飞行模式识别及风险评价模型

王菲茵1(), 袁锦彤1,2, 刘笑辰1, 谭维1, 汪磊1   

  1. 1 中国民航大学 安全科学与工程学院,天津 300300
    2 中国东方航空武汉有限责任公司,湖北 武汉 430300
  • 收稿日期:2024-09-10 修回日期:2024-11-13 出版日期:2025-02-28
  • 作者简介:

    王菲茵 (1990—),女,河北邢台人,博士,讲师,主要从事民航安全与人因、飞行数据挖掘等方面的研究。E-mail:

    谭维 讲师

    汪磊 研究员

  • 基金资助:
    天津市自然科学基金资助(24JCQNJC00200); 中国民航大学科研启动基金资助(2020KYQD67)

Pattern identification and risk assessment model of civil aircraft abnormal flight based on QAR

WANG Feiyin1(), YUAN Jintong1,2, LIU Xiaochen1, TAN Wei1, WANG Lei1   

  1. 1 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
    2 China Eastern Airlines Wuhan Co., Ltd., Wuhan Hubei 430300, China
  • Received:2024-09-10 Revised:2024-11-13 Published:2025-02-28

摘要:

为实时评估与监测飞行风险,利用聚类分析方法挖掘快速存取记录器(QAR)数据蕴含的异常模式,分析民机异常飞行模式的影响因素;以欧氏距离表征QAR参数样本之间的相似性,建立基于K-means的异常飞行模式识别模型,定义异常模式偏离程度;基于全球商用喷气式飞机致命事故起数和死亡人数占比,结合异常模式偏离程度、异常模式持续时间、飞行阶段、安全不期望事件发生的可能性和安全不期望事件发生后果严重程度,提出一种基于QAR数据的民机飞行风险量化评价方法;使用某航空公司实际飞行QAR数据,通过实例验证民机异常飞行模式识别和风险量化模型的可行性。结果表明:异常模式多出现在巡航阶段及各飞行阶段交替临界时刻,不同航班不同飞行阶段异常飞行模式及风险分布差异明显,航班总风险值均值为166.94,但异常值高于386.97,滑跑起飞阶段的异常飞行风险相对偏低,均值为5.95;巡航阶段的异常飞行风险相对偏高,均值为93.46。

关键词: 快速存取记录器(QAR), 民机异常飞行, 模式识别, 风险评价, 聚类分析

Abstract:

In order to assess and monitor flight risks in real-time, clustering analysis was utilized to explore the abnormal patterns embedded in QAR data, and the influencing factors of abnormal flight patterns of civil aircraft were analyzed. The Euclidean distance was employed to characterize the similarity between samples of QAR parameters, establishing an abnormal flight pattern recognition model based on K-means to define the deviation degree of abnormal patterns. By considering the number of fatal accidents and the proportion of deaths in global commercial jet accidents, in conjunction with the deviation degree of abnormal patterns, the duration of abnormal patterns, flight phases, the likelihood of unexpected safety events, and the severity of consequences following unexpected safety events, a quantified assessment method for civil aviation flight risks based on QAR data was proposed. The feasibility of abnormal flight pattern recognition and risk quantification models for civil aircraft was validated through the practical QAR data of a certain airline. The results indicate that abnormal patterns are more prevalent during the cruising phase and critical moments at the transitions between flight phases. Significant differences are observed in the distribution of abnormal flight patterns and risks across different flights and flight phases. The average total risk value for flights is 166.94, with outliers exceeding 386.97. The abnormal flight risk during the takeoff roll phase is relatively low, with an average of 5.95, while the risk during the cruising phase is relatively high, with an average of 93.46.

Key words: quick access recorder(QAR), abnormal flight of civil aircraft, pattern recognition, risk assessment, cluster analysis

中图分类号: