中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (10): 134-142.doi: 10.16265/j.cnki.issn1003-3033.2024.10.1123

• 安全工程技术 • 上一篇    下一篇

基于LightGBM-SHAP的民机硬着陆可解释预测

肖国松1,2(), 刘嘉琛1,3, 张元珊4, 董磊1,2,**, 陈曦1,2   

  1. 1 中国民航大学 民航航空器适航审定技术重点实验室,天津 300300
    2 中国民航大学 科技创新研究院,天津 300300
    3 中国民航大学 安全科学与工程学院, 天津 300300
    4 中国商飞民用飞机试飞中心, 上海 201323
  • 收稿日期:2024-06-10 修回日期:2024-08-15 出版日期:2024-10-28
  • 通信作者:
    ** 董磊(1983—),男,天津人,博士,副研究员,主要从事民机安全性评估与适航审定技术等方面的研究。E-mail:l-dong@cauc.edu.cn。
  • 作者简介:

    肖国松 (1982—),男,湖南衡阳人,硕士,实验师,主要从事航空器适航审定技术、航空发动机故障诊断及预测等方面的研究。E-mail:

    陈曦, 助理研究员

  • 基金资助:
    中央高校基本科研业务费(3122024037); 民用航空器适航审定技术重点实验室开放基金资助(SH2023101701)

Explainable prediction for hard landing of civil aircraft based on LightGBM-SHAP

XIAO Guosong1,2(), LIU Jiachen1,3, ZHANG Yuanshan4, DONG Lei1,2,**, CHEN Xi1,2   

  1. 1 Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation University of China, Tianjin 300300, China
    2 Science and Technology Innovation Research Institute, Civil Aviation University of China, Tianjin 300300, China
    3 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
    4 COMAC Flight Test Center, Shanghai 201323, China
  • Received:2024-06-10 Revised:2024-08-15 Published:2024-10-28

摘要:

为预防民用飞机的硬着陆超限事件,首先,收集包含动力学变量、系统性能和其他工程参数的机载快速存取记录器(QAR)数据,开展机场航段聚类、样本平衡、统计特征提取等数据处理活动;然后,基于轻量级梯度提升机(LightGBM)模型预测民机硬着陆事件,并与极限梯度提升(XGBoost)、决策树(DT)、长短期记忆网络(LSTM)模型进行综合对比;最后,利用Shapley可加性解释(SHAP)算法进一步分析硬着陆事件的致因机制及各飞行参数特征对模型预测结果的影响。结果表明: 所提方法不仅显示出良好的硬着陆事件预测性能,准确率、正确率和召回率分别达到99%,92%和88%,还可针对具体航段对硬着陆预测模型的决策过程提供定量的、可视化的解释信息。

关键词: 轻量级梯度提升机(LightGBM), 民用飞机, 硬着陆, 快速存取记录器(QAR)数据, 机器学习, 可解释

Abstract:

In order to prevent hard landing overrun events of civil aircraft, first, data including kinematics, system performance and other engineering parameters was collected from QAR. Then QAR data processing activities such as the airport segment clustering, sample balancing and statistical feature extraction were carried out. Subsequently, LightGBM model was used to predict the hard landing events of civil aircraft, and compared with extreme gradient boosting (XGBoost), decision tree (DT) and long short-term memory (LSTM) models. Finally, the shapley additive explanation (SHAP) algorithm was employed to identify the causal mechanisms of hard landing events and to analyze the impact of various flight parameters on the model's prediction results. The result demonstrates that the proposed model not only exhibits high accuracy and precision in predicting hard landing events (accuracy, correctness and recall reaching 99%, 92% and 88%, respectively), but also provides quantitative and visual explanation information for the decision-making process of hard landing prediction for specific flight segments.

Key words: lightweight gradient boosting machine (LightGBM), civil aircraft, hard landing, quick access recorder (QAR) data, machine learning, explainable

中图分类号: