[1] |
国家发展改革委, 国家能源局. 中长期油气管网规划[Z]. 2017.
|
[2] |
张丽. 基于机器学习的成品油管道系统运行工况识别方法研究[D]. 北京: 中国石油大学, 2023.5.
|
|
ZHANG Li. Research on machine learning based method for operational states recognition of product oil pipeline systems[D]. Beijing: China University of Petroleum, 2023.5.
|
[3] |
秦程. 基于负压波与流量平衡法的管道泄漏监测系统研究[D]. 大连: 大连理工大学, 2021.
|
|
QIN Cheng. Research on pipeline leakage monitoring system based on negative pressure wave and flow balance method[D]. Dalian: Dalian University of Technology, 2021.
|
[4] |
ABHULIMEN K E, SUSU A A. Liquid pipeline leak detection system: model development and numerical simulation[J]. Chemical Engineering Journal, 2004, 97(1):47-67.
|
[5] |
戚元华, 林伟国, 吴海燕. 基于时域统计特征的天然气管道泄漏检测方法[J]. 石油学报, 2013, 34(6):1195-1199.
doi: 10.7623/syxb201306022
|
|
QI Yuanhua, LIN Weiguo, WU Haiyan. Natural gas pipeline leakage detection method based on time-domain statistical characteristics[J]. Acta Petrolei Sinica, 2013, 34(6):1195-1199.
doi: 10.7623/syxb201306022
|
[6] |
ZUO Zhonglin, MA Li, LIANG Shan, et al. A semi-supervised leakage detection method driven by multivariate time series for natural gas gathering pipeline[J]. Process Safety and Environmental Protection, 2022, 164:468-478.
|
[7] |
ZADKARAMI M, SHAHBAZIAN M, SALAHSHOOR K. Pipeline leak diagnosis based on wavelet and statistical features using Dempster-Shafer classifier fusion technique[J]. Process Safety and Environmental Protection, 2017, 105:156-163.
|
[8] |
ZANG Dong, LIU Jinhai, WANG Huaizhen. Markov chain-based feature extraction for anomaly detection in time series and its industrial application[C]. 2018 Chinese Control and Decision Conference (CCDC). IEEE, 2018:1059-1063.
|
[9] |
NING Fangli, CHENG Zhanghong, MENG Di, et al. A framework combining acoustic features extraction method and random forest algorithm for gas pipeline leak detection and classification[J]. Applied Acoustics, 2021, 182: DOI: 10.1016/j.apacoust.2021.108255.
|
[10] |
赵利强, 王建林, 于涛, 等. 基于二代小波变换和多级假设检验的输油管道缓泄漏检测方法[J]. 石油学报, 2012, 33(5):898-903.
doi: 10.7623/syxb201205024
|
|
ZHAO Liqiang, WANG Jianlin, YU Tao, et al. Slow leakage detection method of oil pipeline based on second-generation wavelet transform and multi-stage hypothesis test[J]. Acta Petrolei Sinica, 2012, 33(5):898-903.
|
[11] |
郎宪明, 王佳政, 曹江涛, 等. 基于改进VMD和TWSVM的多点泄漏检测方法[J]. 振动与冲击, 2021, 40(17):271-278.
|
|
LANG Xianming, WANG Jiazheng, CAO Jiangtao, et al. Multi-point leak detection method based on improved VMD and TWSVM[J]. Journal of Vibration and Shock, 2021, 40(17):271-278.
|
[12] |
张丽, 苏怀, 范霖, 等. 基于时序片段的油气管道运行工况识别方法[J]. 中国安全生产科学技术, 2022, 18(11):99-104.
|
|
ZHANG Li, SU Huai, FAN Lin, et al. Identification method of oil and gas pipeline operating conditions based on time series fragments[J]. Journal of Safety Science and Technology, 2022, 18(11):99-104.
|
[13] |
KHASHA R, SEPEHRI M M, TAHERKHANI N. Detecting asthma control level using feature-based time series classification[J]. Applied Soft Computing, 2021, 111: DOI: 10.1016/j.asoc.2021.107694.
|
[14] |
LINES J, TAYLOR S, BAGNALL A. Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(5):52.1-52.35.
|
[15] |
NGUYEN T L, GSPONER S, IFRIM G. Time series classification by sequence learning in all-subsequence space[C]. IEEE International Conference on Data Engineering. ICDE, 2017:947-958.
|
[16] |
张江石, 李泳暾, 冒香凝, 等. 基于NLP的煤矿事故原因分类研究[J]. 中国安全科学学报, 2023, 33(6):20-26.
doi: 10.16265/j.cnki.issn1003-3033.2023.06.1416
|
|
ZHANG Jiangshi, LI Yongtun, MAO Xiangning, et al. Research on classification of causes of coal mine accidents based on NLP[J]. China Safety Science Journal, 2023, 33(6):20-26.
doi: 10.16265/j.cnki.issn1003-3033.2023.06.1416
|