中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (9): 153-158.doi: 10.16265/j.cnki.issn1003-3033.2025.09.1245

• 安全工程技术 • 上一篇    下一篇

入口流量和管径对弯管内泡沫输运的影响分析

谭甜甜1(), 张佳庆1,**(), 石杨锦2, 李博2   

  1. 1 国网安徽省电力有限公司电力科学研究院 安徽省新型电力系统火灾安全与应急技术重点实验室(国家电网公司输变电设施火灾防护实验室),安徽 合肥 230601
    2 中国地质大学(武汉) 工程学院,湖北 武汉 4300741
  • 收稿日期:2025-04-14 修回日期:2025-06-08 出版日期:2025-09-28
  • 通信作者:
    **张佳庆(1987—),男,安徽安庆人,博士,正高级工程师,主要从事泡沫灭火、电气安全等方面的工作。E-mail:
  • 作者简介:

    谭甜甜 (1994—),女,安徽阜阳人,博士,高级工程师,主要从事固定式压缩空气泡沫灭火技术及综合管廊电力舱火灾防护方面的工作。E-mail:

    李 博 副教授

  • 基金资助:
    国家电网有限公司科学技术项目(52120524000U)

Analysis of influence of inlet flow and pipe diameter on foam transport in bent pipe

TAN Tiantian1(), ZHANG Jiaqing1,**(), SHI Yangjin2, LI Bo2   

  1. 1 Anhui Provincial Key Laboratory of New Type Power Systems Fire Safety and Emergency Technology(State Grid Laboratory of Fire Protection for Transmission and Distribution Facilities), State Grid Anhui Electric Power Research Institute, Hefei Anhui 230601, China
    2 Faculty of Engineering, China University of Geosciences(Wuhan), Wuhan Hubei 430074, China
  • Received:2025-04-14 Revised:2025-06-08 Published:2025-09-28

摘要:

为优化工程灭火技术,采用数值模拟的方式探究泡沫入口处流量和管径对压缩空气泡沫输运行为的影响,模拟中流量的变化范围为1 000~2 400 L/min,管径的变化范围为DN80—DN220,提取表征泡沫输运特性的参量(流场、涡量、黏度和压降)。结果表明:泡沫流体在弯管处速度由外向内形成低速、高速和低速3个区域,但是流量和管径变化对3个区间的影响程度不同。在入口流量影响方面,涡量与入口流量之间呈现正相关关系;并且弯管内侧低速区域增加,高速区域向外侧壁面挤压,外侧低速区域范围减小。同时,随着泡沫流体入口流量的增加,流体的黏度逐渐减小,压降呈现先增加后趋于稳定的变化趋势。在管径影响方面,相对于入口流量,管径增加后弯头附近的速度分层变化和涡旋变化均较为微弱,同时,管内的压降随着管径的增大而逐渐减小,当管径由DN80增加至DN220时,局部压降降低约2/3。

关键词: 管径, 入口流量, 泡沫输运, 压降分布, 泡沫黏度

Abstract:

In order to optimize engineering fire-extinguishing technologies, numerical simulation was employed to investigate the effects of flow rate and pipe diameter at the foam inlet on the transport behavior of compressed air foam. In the simulation, the flow rate varied within the range of 1 000-2 400 L/min, and the pipe diameter ranged from DN80 to DN220. Characteristic parameters characterizing foam transport were extracted, including flow field, vorticity, viscosity, and pressure drop. The results show that the velocity of the foam fluid at the elbow forms three regions from the outside to the inside: low-speed, high-speed, and low-speed. However, the flow rate and pipe diameter changes have different degrees of influence on these three regions. Regarding the effect of inlet flow rate, there is a positive correlation between vorticity and inlet flow rate. Additionally, the low-speed region on the inner side of the elbow increases, the high-speed region is squeezed toward the outer wall, and the range of the low-speed region on the outer side decreases. Meanwhile, as the inlet flow rate of the foam fluid increases, the viscosity of the fluid gradually decreases, and the pressure drop first increases and then tends to stabilize. In terms of the influence of pipe diameter, compared with the inlet flow rate, the changes in velocity stratification and vortex near the elbow are relatively slight when the pipe diameter increases. Moreover, the pressure drop inside the pipe gradually decreases with the increase in pipe diameter. When the pipe diameter increases from DN80 to DN220, the local pressure drops decreases by approximately two-thirds.

Key words: pipe diameter, inlet flow rate, foam transport, pressure drop, foam viscosity

中图分类号: